Monte Carlo Simulation of Electron Transport in Semiconductor \mathfrak{N} anodevices

Philippe Dollfus
Institute of Fundamental Electronics (IEF)
CNRS - University of Paris-Sud (UPS)
Orsay, France
philippe.dollfus@ief.u-psud.fr

Research topics

Modelling and simulation of transport in semiconductor nanodevices

Different kind of devices:
\rightarrow in strong connection with industrial R\&D:

- "conventional" transistors (MOSFET, HEMT, ...): towards nm scale
\rightarrow more advanced devices for nanoelectronics:
- quantum dots and single electron devices
- quantum wires, carbon nanotubes and related devices
- resonant tunelling diode
(o) Different approaches to transport modelling:
- Semi-classical Boltzmann transport equation (Monte Carlo)
- Single electron tunnelling (Master equation and Monte Carlo)
- Quantum transport equations
- Non-Equilibrium Green function (tight-binding)
- Wigner function (Monte Carlo)
${ }^{\sigma}$ Device simulator associated with these modelling techniques:

Permanent researchers:
Valérie Aubry-Fortuna
Arnaud Bournel
Sylvie Galdin-Retailleau
Johann Sée
Philippe Dollfus

Engineer:
Christophe Chassat

PhD students:

Emmanuel Fuchs (also with ST, Grenoble) [compact modelling of nano-MOSFETs] Jérôme Saint Martin [ballistic effects and quantization effects in nano-MOSFETs]
Marie-Anne Jaud (also with CEA-LETI, Grenoble) [quantum corrections in MC algorithms] Do Van Nam (also with IOP, Hanoi) [quantum transport in nanodevices, NEGF] Hugues Cazin (also with CEA-SCM, Saclay) [transport in carbon nanotubes and transistors] Damien Querlioz [quantum transport, Wigner function]
Audrey Valentin [single-electron devices, QDs]
Karim Huet (also with ST, Grenoble) [device simulation using full-band description]

Microelectronics and CMOS limits

The top-down approach in microelectronics:
Downscaling of CMOS devices
CMOS requires very good and reproducible device characteristics:

- high $I_{\text {on }}$ (rapidity)
- low $I_{\text {off }}$ (power consumption)
- well calibrated V_{T}

Downscaling in the nanometer range makes difficult to meet the CMOS requirements:

- gate tunneling leakage (ultra-thin oxide)
- short-channel effects (degradation of current control)
- access resistances
- quantum effects (charge control and transport)
- interface and doping fluctuations (fluctuations of device characteristics)
- ...
the concept of CMOS is questionable at the nanometer scale

The future: nanoelectronics and bottom-up

The bottom-up approach:

1) Introduction of nano-objects in conventional devices and circuits \rightarrow new functionalities
2) New concepts of devices and circuits based on nano-objects, molecules,... \rightarrow post-CMOS architectures

Possible candidates:

Carbone nanotube (CNT)

- semiconducting CNT : excellent transport properties \rightarrow channel of FET - metallic CNT : interconnects
silicon or germanium nanocrystal (NC)
- Coulomb blockade effect, improved current control
- "Single-electron" devices and circuits
\Rightarrow Promising demonstrations of devices
\Rightarrow compatible with silicon technology

The evolution of microelectronics: towards nanoelectronics

Contents

First part: 1. From the crystal to the transport equation
2. Classical transport: the Boltzmann transport equation

* distribution Function and transport equation
* Scattering
* Solution: the particle Monte Carlo method
* Examples of applications: MOSFET, CNT

Second part: 3. Quantum transport: the Wigner transport equation

* Wigner function and transport equation
* Solution: the particle Monte Carlo method
* Examples of applications: RTD

Third part: 4. Coulomb blocade in conducting island: principle
[5. Electronic structure of semiconductor quantum dot]
6. Single electron tunneling: I-V characteristics

* Tunnel transfer hamiltonian
* Metallic vs Semiconductor quantum dot
* Monte Carlo simulation - Examples: MISiIM

Transport in semiconductor nanodevices

1. From the crystal to the transport equation

The semiconductor crystal

* Most usual semiconductors have a diamond-like ($\mathrm{Si}, \mathrm{Ge} \mathrm{)} \mathrm{or} \mathrm{zinc-blende-like} \mathrm{(GaAs)} \mathrm{structure}$
* Diamond and zinc-blende crystal $=2$ fcc lattices:

1 is displaced 1 quarter of the length along the diagonal

tetrahedral bonding with 4 nearest neighbors

$$
\mathrm{Si}:\left\{\begin{array}{l}
a=0.543 \mathrm{~nm} \\
5 \times 10^{22} \text { atoms } / \mathrm{cm}^{3}
\end{array}\right.
$$

The semiconductor crystal

* Most usual semiconductors have a diamond-like (Si, Ge) or zinc-blende-like (GaAs) structure
* Diamond and zinc-blende crystal $=2$ fcc lattices:

1 is displaced 1 quarter of the length along the diagonal

primitive unit cell (Bravais cell)
= rhomboedron

Reciprocal Lattice (bcc)

1st Brillouin zone
= ocatedron with truncated corners
cubic semiconductors (2 fcc latices):
$N_{u}=2$ atoms per unit cell

The crystal Hamiltonian

For an assembly of atoms in a crystal:

$$
\begin{aligned}
& H=\sum_{l} \frac{p_{l}^{2}}{2 M}+\frac{1}{2} \sum_{l, m} U\left(\vec{R}_{l}-\vec{R}_{m}\right)+\sum_{i} \frac{p_{i}^{2}}{2 m}+\frac{1}{2} \sum_{i, j} W\left(\vec{r}_{i}-\vec{r}_{j}\right)+\sum_{i, l} V\left(\vec{r}_{i}-\vec{R}_{l}\right) \\
& \text { Where } l \text { and } m \text { label the nuclei, } i \text { and } j \text { label the electrons, } p \text { is the momentum } \\
& \quad \begin{array}{l}
M
\end{array} \text { is the nucleus mass and } m \text { is the electron mass } \\
& \quad \vec{R} \text { is the position of a nucleus and } \vec{r} \text { is the position of an electron } \\
& \frac{p_{l}^{2}}{2 M} \quad \ldots \ldots \ldots \ldots \ldots \ldots . \text { is the kinetic energy of the nucleus } l \\
& \frac{p_{i}^{2}}{2 m} \quad \ldots \ldots \ldots \ldots \ldots . . \text { is the kinetic energy of the electron } i
\end{aligned} \quad \begin{aligned}
& U\left(\vec{R}_{l}-\vec{R}_{m}\right) \quad \ldots \ldots \ldots \ldots . \text { is the interaction potential between nuclei } l \text { and } m \\
& W\left(\vec{r}_{i}-\vec{r}_{j}\right)=\frac{q^{2} / 4 \pi \varepsilon_{0}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|} \text { is the interaction potential between electrons } i \text { and } j \\
& V\left(\vec{r}_{i}-\vec{R}_{l}\right) \ldots \ldots \ldots \ldots \ldots . \text { is the interaction potential between electron } i \text { and nucleus } l
\end{aligned}
$$

Schrödinger equation: $H \Psi=E \Psi$

The crystal Hamiltonian: approximations

1st approximation:

* Core electrons are strongly linked to the nucleus which forms an « ion core» labeled by indexes / and m.
* In the previous equations the indexes i and j only label valence electrons which is the main sub-system of interest in transport problems.

The crystal Hamiltonian: approximations

2nd approximation: ("adiabatic" or "Born-Oppenheimer")

\checkmark electrons much slower than ions

\Rightarrow Electrons can instantaneously adjust their motion to that of the ions.
\Rightarrow Thus the wave function is approximately of the form:

$$
\Psi=\Psi_{e}\left(\vec{r}, \vec{R}_{0}\right) \Psi_{\text {ion }}(\vec{R})
$$

where: $\begin{cases}\Psi_{i o n}(\vec{R}) & \text { is the wavefunction for all the ions (independent on electron position) } \\ \Psi_{e}\left(\vec{r}, \vec{R}_{0}\right) & \text { is the wavefunction for electrons (instantaneously dependent on ion position) }\end{cases}$
$H=H_{\text {ion }}(\vec{R})+H_{e}\left(\vec{r}, \vec{R}_{0}\right)+H_{e-\text { ion }}(\vec{r}, \delta \vec{R})$ with $\quad \delta \vec{R}=\vec{R}-\vec{R}_{0}=\vec{S}$
$\int H_{\text {ion }}(\vec{R})=\sum_{l} \frac{p_{l}^{2}}{2 M}+\frac{1}{2} \sum_{l, m} U\left(\vec{R}_{l}-\vec{R}_{m}\right)$ acts only on the ions
$\left\{H_{e}\left(\vec{r}, \vec{R}_{0}\right)=\sum_{i} \frac{p_{i}^{2}}{2 m}+\frac{1}{2} \sum_{i, j} \frac{q^{2} / 4 \pi \varepsilon_{0}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}+\sum_{i, l} V\left(\vec{r}_{i}-\vec{R}_{0_{l}}\right) \quad\right.$ acts only on the electrons $H_{e-i o n}(\vec{r}, \delta \vec{R})$ is the effect of ion displacement on electrons (usually small perturbation)

The crystal Hamiltonian: approximations

$\left\{H_{\text {ion }}(\vec{R}) \Psi_{\text {ion }}(\vec{R})=E_{\text {ion }} \Psi_{\text {ion }}(\vec{R}) \quad\right.$ is a purely ionic Schrödinger equation $\left\{H_{e}\left(\vec{r}, \vec{R}_{0}\right) \Psi_{e}\left(\vec{r}, \vec{R}_{0}\right)=E_{e} \Psi_{e}\left(\vec{r}, \vec{R}_{0}\right)\right.$ is a purely electronic Schrödinger equation

3rd approximation: ("Mean-field" or "Hartree-Fock" or "one-electron")
4 The electron-electron interaction is averaged and considered as a perturbation

$$
\left\{\begin{array}{ll}
\Psi_{e}\left(\vec{r}, \vec{R}_{0}\right)=\prod_{i} \Psi_{i}\left(\vec{r}_{i}, \vec{R}_{0}\right) \quad \text { where } & \Psi_{i} \text { is the wave function of electron } i \\
H_{e_{i}}\left(\vec{r}_{i}, \vec{R}_{0}\right) \Psi_{i}\left(\vec{r}, \vec{R}_{0}\right)=E_{e_{i}} \Psi_{i}\left(\vec{r}, \vec{R}_{0}\right) & \text { is a one-electron equation } \\
H_{e_{i}}\left(\vec{r}_{i}, \vec{R}_{0}\right)=\frac{p_{i}}{2 m}+\sum_{l} V\left(\vec{r}_{i}-\vec{R}_{0_{l}}\right) \quad \rightarrow \quad V_{c}(\vec{r})=\sum_{l} V\left(\vec{r}_{i}-\vec{R}_{0_{l}}\right) \\
\text { is the (periodic) crystal potential }
\end{array}\right\} \begin{array}{ll}
{\left[\frac{p^{2}}{2 m}+V_{c}(\vec{r})\right] \Psi(\vec{r})=E \Psi(\vec{r}) \quad} & \text { Band Structure of the crystal }
\end{array}
$$

The crystal Hamiltonian: approximations

$$
\left[\frac{p^{2}}{2 m}+V_{c}(\vec{r})\right] \Psi(\vec{r})=E \Psi(\vec{r})
$$

is the electron equation for an ideal non perturbated crystal ($\mathrm{T}=0$, frozen atoms, no impurity, infinite crystal, ...)

By including all sources of perturbation:

Usual approximation:

Weak perturbations \rightarrow transitions between allowed states of ideal crystal (no effect on the band structure)

The crystal Hamiltonian: summary

ion equation: (all ions)	Treatment:
$\Longrightarrow H_{\text {ion }}(\vec{R}) \Psi_{\text {ion }}(\vec{R})=E_{\text {ion }} \Psi_{\text {ion }}(\vec{R})$ gives the phonon spectra	quantum
electron equation: (one electron)	
$\left[\frac{p^{2}}{2 m}+V_{c}(\vec{r})+V_{\text {scatt }}(\vec{r})+V_{\text {ext }}(\vec{r})\right] \Psi(\vec{r})=E \Psi(\vec{r})$	
$\Rightarrow\left[\frac{p^{2}}{2 m}+V_{c}(\vec{r})\right] \Psi(\vec{r})=E \Psi(\vec{r})$ gives the band structure	quantum
$\Longrightarrow \quad V_{\text {scatt }}(\vec{r})$: scatterings (transitions between allowed states)	quantum
$\Rightarrow \quad V_{\text {ext }}(\vec{r})$: transport phenomena	classical or quantum

Semiconductor band structure

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Effective mass end equi-energy surfaces in band extrema

Electron kinematics - acceleration effective mass

* velocity of an electron = group velocity of the wave packet:

$$
\begin{equation*}
v_{g}=\frac{\partial \omega}{\partial k}=\frac{1}{\hbar} \frac{\partial E}{\partial k} \tag{1D}
\end{equation*}
$$

* velocity in k-space:

$$
\begin{equation*}
\vec{v}_{g}=\frac{1}{\hbar} \vec{\nabla}_{k} E \tag{3D}
\end{equation*}
$$

$$
\left(\rightarrow \text { parabolic band }: \vec{v}=\frac{\hbar \vec{k}}{m^{*}}\right)
$$

for an electron under the action of a force \vec{F}

$$
d E=\vec{F} d \vec{r}=\vec{F} \vec{v} d t=\frac{\vec{F}}{\hbar} \cdot \frac{d E}{d \vec{k}} d t \quad \Rightarrow \quad \frac{d \vec{k}}{d t}=\frac{\vec{F}}{\hbar}
$$

* acceleration in real-space:

$$
\begin{align*}
& \frac{d v}{d t}=\frac{1}{\hbar^{2}}\left(\frac{\partial^{2} E}{\partial k^{2}}\right) F \tag{1D}\\
& \frac{1}{m^{*}}=\frac{1}{\hbar^{2}}\left(\frac{\partial^{2} E}{\partial k^{2}}\right) \\
& \gamma=\frac{d v}{d t}=\frac{1}{m^{*}} F
\end{align*}
$$

$$
\vec{\gamma}=\frac{d \vec{v}}{d t}=\left[\frac{1}{m^{*}}\right] \vec{F}
$$

$$
\left(\frac{1}{m^{*}}\right)_{i j}=\frac{1}{\hbar^{2}}\left(\frac{\partial^{2} E}{\partial k_{i} \partial k_{j}}\right)
$$

tensor of acceleration effective mass

Density of states in k-space

semiconductor of finite size \Rightarrow finite number of \boldsymbol{k} values allowed

* in a periodic linear (1D) chain of N atoms of length $L_{x}=N a$, we impose periodic bounadry conditions:

$$
\Psi(0)=\Psi(0+N a) \Rightarrow u_{k}(0)=\exp \left(i k_{x} N a\right) u_{k}(N a) \Rightarrow \exp \left(i k_{x} N a\right)=1
$$

so only discrete values are possible: $k_{x}=n_{x} \frac{2 \pi}{L_{x}}, n_{x}=1,2,3, \ldots$ spin degeneracy $\Rightarrow 2$ possible states in each space $\frac{2 \pi}{L_{x}}$
\rightarrow the density of states in k-space is $n\left(k_{x}\right)=2 \times \frac{L_{x}}{2 \pi}$

* in a 3D crystal of volume $\Omega=L_{x} L_{y} L_{z}$,
\rightarrow the density of states in k-space is

$$
n(\vec{k})=2 \times \frac{L_{x}}{2 \pi} \times \frac{L_{y}}{2 \pi} \times \frac{L_{z}}{2 \pi}=\frac{V}{4 \pi^{3}}
$$

\rightarrow the density of states $n(E)$ in energy-space is deduced from:

$$
\left\{\begin{array}{l}
n(\vec{k}) d \vec{k}=n(E) d E \\
E(\vec{k}) \longleftarrow \text { depends on the material }
\end{array}\right.
$$

Density-of-states effective mass

$\rightarrow \Gamma$ valley of GaAs (spherical): $E(\vec{k})=\frac{\hbar^{2}}{2 m^{*}} k^{2} \quad$ (parabolic approximation) the number of states in the range of energy $[E, E+d E]$ is: $n(E) d E=n(\vec{k}) d \vec{k}$

$$
\begin{array}{c|c|c}
\text { 1D gas (length L) } & \text { 2D gas (surface A) } & \text { 3D gas (volume V) } \\
n(\vec{k}) d \vec{k}=2 \frac{L}{2 \pi} \times d k & n(\vec{k}) d \vec{k}=2 \frac{A}{4 \pi^{2}} \times 2 \pi k d k & n(\vec{k}) d \vec{k}=2 \frac{V}{8 \pi^{3}} \times 4 \pi^{2} k^{2} d k \\
\hline n(E)=\frac{L}{\sqrt{2} \pi \hbar}\left(m^{*}\right)^{1 / 2} \frac{1}{E^{1 / 2}} & n(E)=\frac{A}{\pi \hbar^{2}} m^{*} & n(E)=\frac{V \sqrt{2}}{\pi^{2} \hbar^{3}}\left(m^{*}\right)^{3 / 2} E^{1 / 2} \\
\hline
\end{array}
$$

Density of states effective mass:

$$
m_{D O S}=m^{*}
$$

Density-of-states effective mass

$\rightarrow \Delta$ valleys (6) of Si (ellipsoidal): $\quad E(\vec{k})=\frac{\hbar^{2}}{2 m_{0}}\left(\frac{k_{x}{ }^{2}}{m_{l}}+\frac{k_{y}{ }^{2}}{m_{t}}+\frac{k_{z}{ }^{2}}{m_{t}}\right)$

$$
\begin{equation*}
n(E)=6 \times \frac{V \sqrt{2}}{\pi^{2} \hbar^{3}}\left(m_{0}\right)^{3 / 2}\left(m_{l}^{1 / 2} m_{t}\right)^{3 / 2} E^{1 / 2} \tag{3Dgas}
\end{equation*}
$$

$$
n(E)=\frac{V \sqrt{2}}{\pi^{2} \hbar^{3}}\left(m_{D O S}\right)^{3 / 2} E^{1 / 2}
$$

$$
m_{D O S}=m_{0}\left(6 m_{l}^{1 / 2} m_{t}\right)^{2 / 3}
$$

Quantum confinement: effective mass approximation

Example: GaAIAs/GaAs/GaAs heterostructure \Rightarrow
Conduction band discontinuity

2-dimensional electron gas

Effective mass approximation (m^{*})

$$
\left[-\frac{\hbar^{2}}{2 m^{*}} \frac{d^{2}}{d z^{2}}+V_{p}(z)\right] F(z)=E F(z)
$$

where $F(z)$ is the envelope function of a bound state
\rightarrow The effect of the crystal is fully included in the effective mass m^{*}

$$
\Psi_{\vec{k}}(\vec{r})=F(z) \exp \left(i k_{x} x\right) \exp \left(i k_{y} y\right) u_{\vec{k}_{x y}}(x, y)
$$

Electron transport in semiconductor nanodevices

Contents

First part: 1. From the crystal to the transport equation
2. Classical transport: the Boltzmann transport equation

* distribution Function and transport equation
* Scattering
* Solution: the particle Monte Carlo method
* Examples of applications: MOSFET, CNT

Second part: 3. Quantum transport: the Wigner transport equation

* Wigner function and transport equation
* Solution: the particle Monte Carlo method
* Examples of applications: RTD

Third part: 4. Coulomb blocade in conducting island: principle
[5. Electronic structure of semiconductor quantum dot]
6. Single electron tunneling: I-V characteristics

* Tunnel transfer hamiltonian
* Metallic vs Semiconductor quantum dot
* Monte Carlo simulation - Examples: MISiIM

Electron transport in semiconductor nanodevices

2. Classical transport: The Boltzmann Transport Equation

Distribution function

Classical approach:

The quantum properties of the electrons are neglected: one can specify at each time t the position \vec{r} and the wave vector \vec{k} (or the momentum \vec{p}).
The system is fully described by the distribution function $f(\vec{r}, \vec{k}, t)$
which is the probability to have an electron in state \vec{k} at position \vec{r} at time t
\rightarrow all physical quantities related to the electron gas are deduced from the distribution function:
$\underset{\text { e.g. }}{\vec{~}} \quad\left\{\begin{array}{l}n(\vec{r}, t)=\sum_{k} f(\vec{r}, \vec{k}, t)=\int \rho(k) f(\vec{r}, \vec{k}, t) d \vec{k} \\ v_{x}(\vec{r}, t)=\sum_{k} v_{x}(\vec{k}) f(\vec{r}, \vec{k}, t)=\int \rho(k) v_{x}(\vec{k}) f(\vec{r}, \vec{k}, t) d \vec{k} \\ E(\vec{r}, t)=\sum_{k} E(\vec{k}) f(\vec{r}, \vec{k}, t)=\int \rho(k) E(\vec{k}) f(\vec{r}, \vec{k}, t) d \vec{k}\end{array}\right.$
At thermal equilibrium electrons obey the Fermi-Dirac statistics:

Boltzmann Transport Equation (BTE)

Collision term - scatterings

Possible collision mechanisms (collision \equiv interaction \equiv scattering): $\longrightarrow S_{i}\left(\vec{k}, \vec{k}^{\prime}\right)$

- electron-phonon scattering
- electron-impurity scattering
- electron-electron scattering
- alloy scattering (in SiGe, AlGaAs, ...)
- ...

Transition rate:
(for mechanism i)

$$
\left.S_{i}\left(\vec{k}, \vec{k}^{\prime}\right)=\frac{2 \pi}{\hbar}\left|\left\langle\vec{k}^{\prime}\right| H_{i}\right| \vec{k}\right\rangle\left.\right|^{2} \rho_{k^{\prime}} \delta\left(E^{\prime}-E\right) \begin{gathered}
\text { (Fermi golden rule) } \\
\text { matrix element of } H_{i}
\end{gathered}
$$

Collision term in BTE (in \vec{k}):

$$
\left.\frac{\partial f}{\partial t}\right|_{\text {coll }}=\sum_{i}[\int \underbrace{\left(\vec{k}^{\prime}\right)[1-f(\vec{k})] S_{i}\left(\vec{k}^{\prime}, \vec{k}\right)}_{\text {in-scattering }} d \vec{k}^{\prime}-\int \underbrace{f(\vec{k})\left[1-f\left(\vec{k}^{\prime}\right)\right] S_{i}\left(\vec{k}, \vec{k}^{\prime}\right)}_{\text {out-scattering }} d \vec{k}^{\prime}]=\hat{C} \underbrace{}_{\text {collision operator }} f
$$

in non-degenerate electron gas: $f(\vec{r}, \vec{k}, t) \ll 1$

$$
\left.\xrightarrow{\partial} \quad \frac{\partial f}{\partial t}\right|_{\text {coll }}=\sum_{i}\left[\int f\left(\vec{k}^{\prime}\right) S_{i}\left(\vec{k}^{\prime}, \vec{k}\right) d^{3} \vec{k}^{\prime}-\int f(\vec{k}) S_{i}\left(\vec{k}, \vec{k}^{\prime}\right) d^{3} \vec{k}^{\prime}\right]
$$

Electron-phonon scattering

\rightarrow the energy of each mode ω_{q} is quantized according to:

$$
E_{n_{\mathbf{q}}}=\hbar \omega_{\mathbf{q}}\left[n_{\mathbf{q}}+\frac{1}{2}\right] \quad \varphi_{n_{\mathbf{q}}}=\left|n_{\mathbf{q}}\right\rangle=\underset{\substack{\text { Hermitian polynomial } \\ \text { of degree } n_{\mathbf{q}} \text { in } \mathbf{q}}}{\text { Hen }}
$$

\rightarrow the quantum of energy is a boson particle called phonon, whose number is given by:

$$
n_{\mathbf{q}}=\frac{1}{\exp \left(\frac{\hbar \omega_{\mathbf{q}}}{k_{B} T}\right)-1}
$$

General expression for transition probability per unit of time from \mathbf{k} to \mathbf{k}^{\prime} (per unit わf volume $d \mathbf{k}^{\prime}$)

$$
\begin{array}{r}
S_{e l-p h}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\frac{\hbar}{8 \pi^{2}} \frac{1}{\rho \hbar \omega_{\mathbf{q}}} \underbrace{D_{\mathbf{q}}^{2} G\left(\mathbf{k}, \mathbf{k}^{\prime}\right)}_{\begin{array}{c}
\text { dependent on } \\
\text { phonon process }
\end{array}}\left[n_{\mathbf{q}}+\frac{1}{2} \pm \frac{1}{2}\right] \delta\left(E^{\prime}-E \mp \hbar \omega\right) \\
\left\{\begin{array}{l}
+: \mathrm{em} \\
-: \mathrm{abs}
\end{array}\right.
\end{array}
$$

where ρ is the mass density

$$
G\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\left|\int_{\text {cell }} d \mathbf{r} u_{\mathbf{k}^{\prime}}^{*}(\mathbf{r}) u_{\mathbf{k}}(\mathbf{r}) \exp [i \mathbf{G} \cdot \mathbf{r}]\right|^{2} \quad \text { is the overlap factor }
$$

Electron-phonon scattering

Evaluation of the overlap factor $G\left(\mathbf{k}, \mathbf{k}^{\prime}\right)$

* Electrons:
\rightarrow intravalley process in Γ valley (GaAs): $G\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=$

$$
\frac{\left[(1+\alpha E)^{1 / 2}\left(1+\alpha E^{\prime}\right)^{1 / 2}+\alpha\left(E E^{\prime}\right)^{1 / 2} \cos \theta\right]^{2}}{(1+2 \alpha E)\left(1+2 \alpha E^{\prime}\right)}
$$

\rightarrow intravalley process in X valleys (Si):
\rightarrow intervalley process:

$$
G\left(\mathbf{k}, \mathbf{k}^{\prime}\right) \simeq \text { constant } \simeq 1
$$

* Holes:
\rightarrow intravalley process:

$$
\begin{aligned}
& G\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\frac{1}{4}\left(1+3 \cos ^{2} \theta\right) \\
& G\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\frac{3}{4} \sin ^{2} \theta
\end{aligned}
$$

\rightarrow intervalley process $(\mathrm{hh} \leftrightarrow \mathrm{h})$:

Electron-phonon scattering

Evaluation of the coupling constant $D_{\mathbf{q}}$

* Deformation potential:
\rightarrow acoustic intravalley:
$\hbar \omega_{q}=\hbar v_{s} q$
$D_{\mathbf{q}}=D_{a c} q$
with $D_{a c}$ in eV
(small q) sound velocity

\rightarrow optical/acoustic intervalley: $\hbar \omega_{q}=$ Const
$D_{\mathbf{q}}=D_{0}+D q+\ldots$ (large q)
* Electrostatic force (polar material):
\rightarrow acoustic intravalley (piezoelectric):

$$
D_{\mathbf{q}}=\frac{e P_{z}}{\varepsilon}\left(\frac{q^{2}}{q^{2}+q_{s}^{2}}\right) \quad q_{s}=\sqrt{\frac{e^{2} n}{\varepsilon k_{B} T}}
$$

($P_{z}=$ piezoelectric Const, $q_{s}=$ inverse screening length)
\rightarrow optical intravalley (polar optical):

$$
D_{\mathbf{q}}=\frac{e \omega \sqrt{\rho}}{q}\left(\frac{1}{\varepsilon_{h f}}-\frac{1}{\varepsilon_{l f}}\right)
$$

($\varepsilon_{h f}$ and $\varepsilon_{l f}=$ high frequency and low frequency permittivity)

Electron-impurity scattering

* For 1 ionized impurity:
(Brooks-Herring model)

$$
H_{\text {el-imp }}=U_{\text {coul }}(r)=\frac{e}{4 \pi \varepsilon} \frac{\exp \left(-r / L_{D}\right)}{r}
$$

$\exp \left(-r / L_{D}\right)$ accounts for screening effects due to other electrons

$$
L_{D}=\text { Debye length }
$$

= screening length

- -

$L_{D}=\frac{1}{q_{s}}=\sqrt{\frac{\varepsilon k_{B} T}{e^{2} n}}$
$n=$ electron density
$\leadsto S_{e l-i m p}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\frac{1}{V} \frac{1}{4 \pi^{2} \hbar} \frac{e^{4}}{\varepsilon^{2}} \frac{1}{\left(q^{2}+q_{s}^{2}\right)^{2}} \delta\left(E^{\prime}-E\right)$

* For $N_{\text {imp }}$ impurities: $N_{\text {imp }}=N_{\text {dop }} V$

$$
S_{\text {el-imp }}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\frac{N_{d o p}}{4 \pi^{2} \hbar} \frac{e^{4}}{\varepsilon^{2}} \frac{1}{\left(q^{2}+q_{s}^{2}\right)^{2}} \delta\left(E^{\prime}-E\right)
$$

Solving the BTE for device simulation

$$
\frac{\partial f}{\partial t}=-\vec{v} \cdot \vec{\nabla}_{r} f-\frac{\vec{F}}{\hbar} \cdot \vec{\nabla}_{k} f+\sum_{i}\left[\int f\left(\vec{k}^{\prime}\right) S_{i}\left(\vec{k}^{\prime}, \vec{k}\right) d^{3} \vec{k}^{\prime}-\int f(\vec{k}) S_{i}\left(\vec{k}, \vec{k}^{\prime}\right) d^{3} \vec{k}^{\prime}\right]
$$

Starting from an initial solution, we have all information needed to calculate the time evolution of the distribution function f inside a device:

The BTE is a rather complicated integro-differential equation for f whose direct (deterministic) solution is impracticable in device simulation

$$
\left\{\begin{array}{l}
\text { - simplifying approximations: drift-diffusion (DD) and hydro-dynamic (HD) approaches } \\
\text { - statistical solution: Monte Carlo methods (MC) }
\end{array}\right.
$$

The particle Monte Carlo method

Statistical solution: particle Monte Carlo method

- $f(\vec{r}, \vec{k}, t) \rightarrow$ assembly of individual particles
- 1 particle $\Leftrightarrow \vec{r}(t), \vec{k}(t)$
- N particles allow us to reconstruct $f(\vec{r}, \vec{k}, t)$
\rightarrow no complicated equation to solve
\rightarrow same physical content as the deterministic solution
\rightarrow suitable for device simulation

carrier trajectory: succession of free fights interrupted by instantaneous scatterings

The particle Monte Carlo method

1 particule is characterized at time t by (\vec{r}, \vec{k})
Problem : determination of $\vec{k}(t)$ and $\vec{r}(t)$ under the action of forces and scattering events

the calculation of:
$\frac{d \vec{k}(t)}{d t}=\frac{1}{\hbar} \frac{d \vec{p}(t)}{d t}=\frac{q}{\hbar} \vec{F}$ $\frac{d \vec{r}(t)}{d t}=\vec{v}(t)=\frac{1}{\hbar} \frac{\partial E}{\partial \vec{k}}$ scatterings $E \rightarrow E^{\prime}$ $\vec{k} \rightarrow \vec{k}^{\prime}$
:---:
requires
nothing on the material
band structure $E(\vec{k})$
scattering rates $\lambda_{i}(\vec{k})$

$\lambda_{i}(\vec{k})=$ scattering rate of interaction process i
$=$ probability per unit of time that an electron in state \vec{k} scatters to any state \vec{k}^{\prime} by an interaction process of type i

$$
\lambda_{i}(\vec{k})=\int S_{i}\left(\vec{k}, \vec{k}^{\prime}\right) d \vec{k}^{\prime}
$$

Monte Carlo method: example of scattering rates (1)

Electron-phonon interaction by deformation potential coupling

* Acoustic intravalley scattering

$$
\begin{aligned}
& \rightarrow \text { small energy and small wave vector phonon } \Rightarrow n_{\mathbf{q}}=\left[\exp \left(\frac{\hbar \omega_{\mathbf{q}}}{k_{B} T}\right)-1\right]^{-1} \approx \frac{k_{B} T}{\hbar \omega_{\mathbf{q}}}-\frac{1}{2} \\
& \left.\rightarrow \text { the exchange of energy is neglected (elastic approximation, } E^{\prime}=E\right) \\
& \text { and both emission and absorption are considered through the same process }
\end{aligned} S_{S_{a c}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\frac{k_{B} T}{4 \pi^{2}} \frac{D_{a c}^{2}}{\rho \hbar v_{s}^{2}} \delta\left(E^{\prime}-E\right) \quad \text { with } \quad E(1+\alpha E)=\frac{\hbar^{2}}{2 m_{0}}\left(\frac{k_{x}^{2}}{m_{l}}+\frac{k_{y}^{2}}{m_{t}}+\frac{k_{z}^{2}}{m_{t}}\right)}^{\lambda_{a c}(\vec{k})=\int S_{a c}\left(\vec{k}, \vec{k}^{\prime}\right) d \vec{k}^{\prime} \quad \begin{array}{c}
\text { change of variables: } \\
\vec{k}^{\prime} \rightarrow E, \theta, \varphi
\end{array} d \vec{k}=J(E, \theta, \varphi) d E d \theta d \varphi} \begin{aligned}
& J(E, \theta, \varphi)=\sqrt{2}\left(\frac{m_{0}}{\hbar^{2}}\right)^{3 / 2}(1+2 \alpha E) \sqrt{E(1+\alpha E)} \sin \theta\left(\frac{\sin ^{2} \theta}{m_{t}}+\frac{\cos ^{2} \theta}{m_{l}}\right)^{-3 / 2} \\
& \lambda_{a c}(E)=\int S_{a c}\left(\vec{k}, \vec{k}^{\prime}\right) J(E, \theta, \varphi) d E d \theta d \varphi \\
& \lambda_{a c}(E)=\frac{\sqrt{2}}{\pi} \frac{k_{B} T}{\rho \hbar^{4} v_{s}^{2}} m_{D O S}^{3 / 2} D_{a c}^{2}(1+2 \alpha E) \sqrt{E(1+\alpha E)}
\end{aligned}
$$

Monte Carlo method: example of scattering rates (2)

Electron-phonon interaction by deformation potential coupling

* Intervalley scattering ($Z_{i v}$ possible final valleys)
zero order process: $D_{\mathbf{q}}=D_{0}$

$$
S_{i v_{0}}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=Z_{i v} \frac{\hbar}{8 \pi^{2}} \frac{D_{0}^{2}}{\rho \hbar \omega_{i v}}\left[n_{\mathbf{q}}+\frac{1}{2} \pm \frac{1}{2}\right] \delta\left(E^{\prime}-E \mp \hbar \omega\right) \quad\left\{\begin{array}{l}
+: \text { emission } \\
-: \text { absorption }
\end{array}\right.
$$

$\lambda_{i v_{0}}(E)=\frac{Z_{i v}}{\sqrt{2} \pi} \frac{1}{\rho \hbar^{3} \omega_{i v}} m_{D O S}^{3 / 2} D_{0}^{2}\left[n_{\mathbf{q}}+\frac{1}{2} \pm \frac{1}{2}\right][1+2 \alpha(E \mp \hbar \omega)] \sqrt{(E \mp \hbar \omega)(1+\alpha(E \mp \hbar \omega))}$

example: $\mathrm{Si}(T=300 \mathrm{~K})$

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{ac}}=9 \mathrm{eV} \\
& \mathrm{D}_{0}=3.4 \times 10^{8} \mathrm{eV} / \mathrm{cm} \\
& \quad \text { intervalley }(\Delta-\Delta) \text { phonons: }
\end{aligned}
$$

g1	$\hbar \omega_{i v}=11.4 \mathrm{meV}$
g2	$\hbar \omega_{i v}=18.8 \mathrm{meV}$
g3	$\hbar \omega_{i v}=63.2 \mathrm{meV}$
f1	$\hbar \omega_{i v}=21.9 \mathrm{meV}$
f2	$\hbar \omega_{i v}=46.3 \mathrm{meV}$
f3	$\hbar \omega_{i v}=59.1 \mathrm{meV}$

For the simulation during a time $t_{\text {sim }}$ of a device containing $N_{\text {part }}$ particules
($N_{\text {part }}$ is not constant)

Monte Carlo method: selection of free-flight duration

1. Suppose $\lambda_{\text {tot }}(E)=\sum_{i} \lambda_{i}(E)=$ Const $=\lambda_{0}$

Consider $n_{C F}=$ population of electrons that have not experienced any collision since $t=0$ (CF = Collision-Free)
Each electron having the same scattering rate λ_{0}, the time rate of change of $n_{C F}$ is:

$$
\frac{d n_{C F}}{d t}=-\lambda_{0} n_{C F} \Rightarrow n_{C F}(t)=n_{C F}(0) \exp \left(-\lambda_{0} t\right)
$$

\rightarrow The probability that an electron has a free flight (no collision) during the time t is therefore:

$$
\frac{n_{C F}(t)}{n_{C F}(0)}=\exp \left(-\lambda_{0} t\right)
$$

\rightarrow The probability that an electron suffers a collision during the time interval $d t$ is:

$$
\lambda_{0} d t
$$

\Rightarrow The probability that an electron suffers its first collision between t and $t+d t$ is:

$$
P(t) d t=\exp \left(-\lambda_{0} t\right) \times \lambda_{0} d t
$$

Monte Carlo method: selection of free-flight duration

The probability that the free-fight time is less than t_{f} is: $R_{f}=R\left(t_{f}\right)=\int_{0}^{t_{f}} P(t) d t$ of course we have: $R(\infty)=\int_{0}^{\infty} P(t) d t=1$

To select t_{f} according to $P(t)$

$$
\Leftrightarrow
$$

To select a random number R_{f} uniformly distributed between 0 and 1, i.e. according to $P_{r}(R)=1$

$$
P_{r}(R) d R=P(t) d t
$$

$$
\begin{aligned}
\int_{0}^{R_{f}} d R & =\int_{0}^{t_{f}} P(t) d t \Rightarrow \\
\xrightarrow{q} & R_{f}=1-\exp \left(-\lambda_{0} t_{f}\right) \\
& \text { where } R_{f}^{\prime}=1-\frac{\ln \left(R_{f}^{\prime}\right)}{\lambda_{0}}
\end{aligned}
$$

Monte Carlo method: selection of free-flight duration

2. BUT $\lambda_{\text {tot }}(E)=\sum_{i} \lambda_{i}(E)$ is not constant solution: we introduce a new interaction
\Longrightarrow fictitious interaction: self-scattering $\lambda_{s C}(E)$

$$
\lambda_{\text {tot }}(E)+\lambda_{s c}(E)=\text { Const }=\lambda_{0}
$$

(if selected this interaction has no effect on the electron state)

Monte Carlo method: selection of scattering event

* Type of scattering: after each free flight, the electron undergoes a scattering event

of which type?

selection using a random number R_{s} uniformly distributed between 0 and 1 :

$$
g_{j}(E)=\sum_{i=1}^{j} \lambda_{i}(E) / \lambda_{0}
$$

\rightarrow in this case the scattering process i is selected

Monte Carlo method: selection of scattering event

* Effect of selected scattering: deviation of the wave vector and possible energy exchange

$I\left(\theta_{s}, \varphi_{s}\right)=\int_{0}^{\theta_{s}} d \theta \sin \theta \int_{0}^{\varphi_{s}} d \varphi B(\theta, \varphi) \quad$ selection of θ_{s} and φ_{s} with random numbers R_{θ} and R_{φ} :
case of isotropic scattering:
$\left\{\begin{array}{l}P\left(\theta_{s}\right)=\left(1-\cos \theta_{s}\right) / 2 \\ P\left(\varphi_{s}\right)=\varphi_{s} / 2 \pi\end{array} \Rightarrow\left\{\begin{array}{l}\cos \theta_{s}=1-2 R_{\theta} \\ \varphi_{s}=2 \pi R_{\varphi}\end{array}\right.\right.$

$$
\left\{\begin{array}{l}
P\left(\theta_{s}\right)=\frac{I\left(\theta_{s}, 2 \pi\right)}{I(\pi, 2 \pi)}=R_{\theta} \\
P_{\theta_{s}}\left(\varphi_{s}\right)=\frac{I\left(\theta_{s}, \varphi_{s}\right)}{I\left(\theta_{s}, 2 \pi\right)}=R_{\varphi}
\end{array} \rightarrow \theta_{s}\right.
$$

Transport Monte Carlo simulation

Velocity-Field characteristics in uniform material - Stationary transport (equilibrium between perturbation and relaxation effects)

?
Extraction of intrinsic transport parameters (mobility, relaxation times, saturation velocity,...)

Device Monte Carlo simulation: particle trajectories

N-channel MOSFET

red dots: electrons
gean dots: holes

Possibility to make movies of particle motion in the working device

Monte Carlo method: boundary conditions

Device $=$ open system for which appropriate boundary conditions must be applied

1. Boundary conditions for the solution of Poisson's equation:
$\underbrace{V_{\text {bias }}}$ * on nodes adjacent to a metallic contact, the electrostatic potential is fixed:

$$
V\left(i_{\text {node }}\right)=V_{\text {bias }}
$$

* on other device boundaries, the normal component of the electric field vanishes:

$$
E_{\perp}=\frac{d V}{d x}=0
$$

2. Conditions for carrier injection into the device:

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

MOSFET architectures (N-channel)

Study of nano-scaled DGMOS

Study of DGMOS: $I_{D}-V_{D S}$ characteristics

Study of DGMOS: influence of gate length

Effective channel Length: $\mathrm{L}_{\mathrm{C}}=15 \mathrm{~nm}, 25 \mathrm{~nm}$ and 50 nm
potential energy along the channel $\left(\mathrm{L}_{\mathrm{C}}=15 \mathrm{~nm}\right)$
= profile of the bottom of conduction band

Velocity along the channel $\left(\mathrm{V}_{\mathrm{DS}}=0,7 \mathrm{~V}\right)$

peak velocity $>2 \times 10^{7} \mathrm{~cm} / \mathrm{s}$
\rightarrow greater than saturation velocity $=10^{7} \mathrm{~cm} / \mathrm{s}$
\Rightarrow non stationary transport

Study of DGMOS: velocity distribution

$$
\begin{gathered}
\mathrm{L}_{\mathrm{C}}=15 \mathrm{~nm} \\
\mathrm{~V}_{G S}=\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DD}}=0.7 \mathrm{~V}
\end{gathered}
$$

Evolution along the channel (electrons coming from the source)

At the drain-end of the channel

2 peaks corresponding to the velocity of ballistic electrons with either a transverse mass ($m_{t}=0.19 \mathrm{~m}_{0}$) or a longitudinal mass ($m_{l}=0.916 \mathrm{~m}_{0}$)

Study of DGMOS: velocity distribution

$$
\begin{gathered}
\mathrm{L}_{\mathrm{C}}=15 \mathrm{~nm} \\
\mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DD}}=0.7 \mathrm{~V}
\end{gathered}
$$

At the drain-end of the channel,
The part of purely ballistic, one-scattered and twice-scattered electrons:

\rightarrow ballistic electrons form a large part of the velocity peaks in the distribution

Study of DGMOS: ballisticity

Structure of Carbon nanotubes

Rolling of a graphene sheet Carbon nanotube (CNT)

Conduction Band Structure of CNTs

Stationary transport

- Velocity-Field characteristics $(T=300 K)(n-1=3 p)$

Maximum Stationary Velocity:	$v_{\max }=3.43 \times 10^{7} \mathrm{~cm} / \mathrm{s}$ for $n=10$
Maximum Low-Field Mobility :	$\mu=4 \times 10^{3} \mathrm{~cm}^{2} / \mathrm{Vs}$ for $n=10$ $\left(\mu=1.41 \times 10^{5} \mathrm{~cm}^{2} / \mathrm{Vs}\right.$ for $n=58$

Transient behaviour

- Response to a step field
- Time evolution of average electron velocity
$t=0 \quad$ Time t

High Velocity Overshoot: \quad vpeak $=7.8 \times 10^{7} \mathrm{~cm} / \mathrm{s}$ for $n=34$ vstat $=3.8 \times 10^{7} \mathrm{~cm} / \mathrm{s}$

Transient behaviour

Electron transport in semiconductor nanodevices

Contents

First part: 1. From the crystal to the transport equation
2. Classical transport: the Boltzmann transport equation

* distribution Function and transport equation
* Scattering
* Solution: the particle Monte Carlo method
* Examples of applications: MOSFET, CNT

Second part: 3. Quantum transport: the Wigner transport equation

* Wigner function and transport equation
* Solution: the particle Monte Carlo method
* Examples of applications: RTD

Third part: 4. Coulomb blocade in conducting island: principle
[5. Electronic structure of semiconductor quantum dot]
6. Single electron tunneling: I-V characteristics

* Tunnel transfer hamiltonian
* Metallic vs Semiconductor quantum dot
* Monte Carlo simulation - Examples: MISiIM

Electron transport in semiconductor nanodevices

3. Quantum transport: The Wigner Transport Equation

The Wigner formalism of quantum transport is based on a function defined in a (\mathbf{r}, \mathbf{p}) phase space in strong analogy with the classical description of transport.

It looks very appropriate to deal with space-dependent problems (device simulation)

The Wigner Function

$\int-$ Semi-classical picture: electrons are described by specifying the distribution function
\{- Quantum mechanical picture: the phase relationship between the different states

$$
\begin{aligned}
\text { for an electron with the wave function } & \sum_{\mathbf{k}} a_{\mathbf{k}}|\mathbf{k}\rangle \\
\text { the density matrix is defined as } & \rho\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=a_{\mathbf{k}} a_{\mathbf{k}^{\prime}}^{*}
\end{aligned}
$$

(in semi-classical approach, assuming the phase relaxation length to be very short, $f(\mathbf{k})$ is given by the diagonal elements of $\rho(\mathbf{k}, \mathbf{k})$)

For any operator $\mathcal{A}:\langle\mathcal{A}\rangle=\operatorname{Tr}(\rho \mathcal{A})$

Elementary definition of the Wigner function for an electron described by the wave function $\psi(\mathbf{r}, t)$ normalized to 1 in the volume V of interest:

$$
\begin{aligned}
f_{w}(\mathbf{r}, \mathbf{k}, t) & =\frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right)\left\langle\mathbf{r}+\mathbf{r}^{\prime} / 2\right| \rho(t)\left|\mathbf{r}-\mathbf{r}^{\prime} / 2\right\rangle \\
& =\frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right) \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)
\end{aligned}
$$

Some properties of the Wigner Function

* with this definition, we have: $\iint f_{w}(\mathbf{r}, \mathbf{k}) d \mathbf{k} d \mathbf{r}=1$
* For an N particle system, we have: $\iint\left[N f_{w}(\mathbf{r}, \mathbf{k})\right] d \mathbf{k} d \mathbf{r}=N$
$N \times f_{w}$ can be compared with the occupation number of quantum state \mathbf{k}
* Particle density in real and reciprocal space

$$
\begin{aligned}
& \int f_{w}(\mathbf{r}, \mathbf{k}) d \mathbf{k}
\end{aligned}=|\Psi(\mathbf{r})|^{2}=n(\mathbf{r}), \begin{aligned}
\int f_{w}(\mathbf{r}, \mathbf{k}) d r & =\frac{1}{(2 \pi)^{3}} \int d r_{1} \int d r_{2} \exp \left(-i \mathbf{k} \cdot\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)\right) \psi\left(\mathbf{r}_{2}\right) \Psi *\left(\mathbf{r}_{1}\right) \\
& =|\Phi(\mathbf{k})|^{2}=n(\mathbf{k})
\end{aligned}
$$

* Mean value of an operator \mathcal{A} over a statistical ensemble

$$
\langle\mathcal{A}\rangle=\operatorname{Tr}(\rho \mathcal{A})=\int d \mathbf{r}_{1} \int d \mathbf{r}_{2}\left\langle\mathbf{r}_{1}\right| \mathcal{A}\left|\mathbf{r}_{2}\right\rangle\left\langle\mathbf{r}_{2} \mid \Psi\right\rangle\left\langle\Psi \mid \mathbf{r}_{1}\right\rangle \quad \text { using the }|\mathbf{r}\rangle \text { representation }
$$ change in average \mathbf{r} and relative \mathbf{r}^{\prime} position:

Some properties of the Wigner Function

$$
\begin{aligned}
& \langle\mathcal{A}\rangle=\int d \mathbf{r} \int d \mathbf{r}^{\prime} \mathcal{A}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, \mathbf{r}+\mathbf{r}^{\prime} / 2\right) \Psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2\right) \Psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2\right) \\
& \text { introduction of } \delta\left(\mathbf{r}^{\prime}-\mathbf{r}^{\prime \prime}\right) \text { to recover the Wigner function: } \\
& \langle\mathcal{A}\rangle=\int d \mathbf{r} \int d \mathbf{r}^{\prime} \mathcal{A}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, \mathbf{r}+\mathbf{r}^{\prime} / 2\right) \int d \mathbf{r}^{\prime \prime} \delta\left(\mathbf{r}^{\prime}-\mathbf{r}^{\prime \prime}\right) \Psi\left(\mathbf{r}+\mathbf{r}^{\prime \prime} / 2\right) \Psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime \prime} / 2\right) \\
& \langle\mathcal{A}\rangle=\int d \mathbf{r} \int d \mathbf{r}^{\prime} \mathcal{A}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, \mathbf{r}+\mathbf{r}^{\prime} / 2\right) \int d \mathbf{r}^{\prime \prime} \\
& \times \frac{1}{(2 \pi)^{3}} \int d \mathbf{k} \exp \left(i \mathbf{k} \cdot\left(\mathbf{r}^{\prime}-\mathbf{r}^{\prime \prime}\right)\right.
\end{aligned}
$$

$$
\langle\mathcal{A}\rangle=\int d \mathbf{r} \int d \mathbf{k} \mathcal{A}_{w}(\mathbf{r}, \mathbf{k}) f_{w}(\mathbf{r}, \mathbf{k})
$$

with

$$
\mathcal{A}_{w}(\mathbf{r}, \mathbf{k})=\int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right) \mathcal{A}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, \mathbf{r}+\mathbf{r}^{\prime} / 2\right)
$$

Some properties of the Wigner Function

If \mathcal{A} is only \mathbf{r} dependent: $\mathcal{A}(\mathbf{r})=\langle\mathbf{r}| \mathcal{A}|\mathbf{r}\rangle$

$$
\langle\mathcal{A}\rangle=\int d \mathbf{r} \int d \mathbf{k} \mathcal{A}(\mathbf{r}) f_{w}(\mathbf{r}, \mathbf{k})
$$

If \mathcal{A} is only \mathbf{k} dependent : $\mathcal{A}(\mathbf{k})=\langle\mathbf{k}| \mathcal{A}|\mathbf{k}\rangle$

$$
\langle\mathcal{A}\rangle=\int d \mathbf{r} \int d \mathbf{k} \mathcal{A}(\mathbf{k}) f_{w}(\mathbf{r}, \mathbf{k})
$$

\Rightarrow Complete analogy between the Wigner function and the classical distribution function

However, the Wigner function is not a distribution function (or a probability density) !

- it may assume negative values
- it would be in contradiction with the Heisenberg inequalities (it is just mathematically used as a distribution function)

Dynamical equation of the Wigner Function

$$
f_{w}(\mathbf{r}, \mathbf{k}, t)=\frac{1}{(2 \pi)^{3}} \int \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right) \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right) d \mathbf{r}^{\prime}
$$

$$
\begin{array}{r}
i \hbar \frac{\partial f_{w}}{\partial t}=\frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right) i \hbar \frac{\partial}{\partial t}\left[\psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right) \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)\right] \\
=\frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right)\left[\left(H \psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right)\right) \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)\right. \\
\left.-\psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right)\left(H \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)\right)\right]
\end{array}
$$

$$
\text { where } H=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})=H_{0}+V(\mathbf{r})
$$

with $V(\mathbf{r})$ a general potential applied to the electron
We consider separately the effect of free electron term H_{0} and of the potential $V(\mathbf{r})$

Dynamical equation of the Wigner Function

* free electron term $\left(H=H_{0}\right)$

$$
\begin{array}{r}
i \hbar \frac{\partial f_{w}}{\partial t}=\frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right)\left[\left(-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right)\right) \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)\right. \\
\left.-\psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right)\left(-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)\right)\right] \\
=-\frac{\hbar^{2}}{2 m} \frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right) 2 \nabla^{\prime}\left[\left(\nabla \psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right)\right) \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)\right. \\
\left.-\psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right)\left(\nabla \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)\right)\right]
\end{array}
$$

(where $\nabla^{\prime} \rightarrow$ derivation with respect to \mathbf{r}^{\prime})
integration by parts, assuming the wave function and its derivative to vanish at infinity, leads to:

$$
\frac{\partial f_{w}}{\partial t}=-\frac{\hbar}{m} \mathbf{k} \cdot \frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right) \nabla\left[\psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right) \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)\right]=-\frac{\hbar}{m} \mathbf{k} \cdot \nabla f_{w}
$$

Dynamical equation of the Wigner Function

* term including the effect of potential $V(\mathbf{r})$

$$
\begin{array}{r}
i \hbar \frac{\left.\partial f_{w}\right|_{V}=\frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right)[}{}\left[V\left(\mathbf{r}+\mathbf{r}^{\prime} / 2\right) \psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right) \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)\right. \\
\left.-\psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right) V\left(\mathbf{r}-\mathbf{r}^{\prime} / 2\right) \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)\right] \\
=\frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right)\left[V\left(\mathbf{r}+\mathbf{r}^{\prime} / 2\right)-V\left(\mathbf{r}-\mathbf{r}^{\prime} / 2\right)\right] \\
\times\left[\psi\left(\mathbf{r}+\mathbf{r}^{\prime} / 2, t\right) \psi^{*}\left(\mathbf{r}-\mathbf{r}^{\prime} / 2, t\right)\right]
\end{array}
$$

inserting the plane wave representation of the d function leads to:
$\left.\frac{\partial f_{w}}{\partial t}\right|_{V}=\int d \mathbf{k}^{\prime} V_{w}\left(\mathbf{r}, \mathbf{k}-\mathbf{k}^{\prime}\right) f_{w}\left(\mathbf{r}, \mathbf{k}^{\prime}\right)$
where $V_{w}(\mathbf{r}, \mathbf{k})=\frac{1}{i \hbar} \frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right)\left[V\left(\mathbf{r}+\mathbf{r}^{\prime} / 2\right)-V\left(\mathbf{r}-\mathbf{r}^{\prime} / 2\right)\right]$
is the Wigner potential

Dynamical equation of the Wigner Function

by including the free electron term, we have finally:

$$
\frac{\partial f_{w}}{\partial t}+\frac{\hbar}{m} \mathbf{k} \cdot \nabla f_{w}=\int d \mathbf{k}^{\prime} V_{w}\left(\mathbf{r}, \mathbf{k}-\mathbf{k}^{\prime}\right) f_{w}\left(\mathbf{r}, \mathbf{k}^{\prime}\right)
$$

Wigner Transport Equation (WTE)
\rightarrow Dynamical equation for ballistic electrons moving in the potential $V(\mathbf{r})$

$$
\hat{Q}[V] f_{w}(\mathbf{r}, \mathbf{k})=\int d \mathbf{k}^{\prime} V_{w}\left(\mathbf{r}, \mathbf{k}-\mathbf{k}^{\prime}\right) f_{w}\left(\mathbf{r}, \mathbf{k}^{\prime}\right)
$$

is the quantum evolution term of the Wigner function

Next steps:

* transforming the Wigner potential to see better the connection with BTE
* introduction of scatterings (collisions)
* solution of BTE for device simulation

Connection between Wigner TE and Boltzmann TE

The Wigner potential writes:

$$
V_{w}(\mathbf{r}, \mathbf{p})=\frac{1}{i \hbar} \frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right) B_{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)
$$

$$
\text { where } B_{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=V\left(\mathbf{r}+\mathbf{r}^{\prime} / 2\right)-V\left(\mathbf{r}-\mathbf{r}^{\prime} / 2\right)
$$

Gradient expansion of the potential $V: \hat{V}_{\mp}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=V\left(\mathbf{r} \pm \mathbf{r}^{\prime} / 2\right)-\nabla V(\mathbf{r}) \cdot\left(\pm \mathbf{r}^{\prime} / 2\right)$

$$
\begin{align*}
& \hat{B}_{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\hat{V}_{+}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)-\hat{V}_{-}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \\
& \quad \rightarrow B_{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\hat{B}_{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)+\nabla V(\mathbf{r}) \cdot \mathbf{r}^{\prime}
\end{align*}
$$

$\left\{\right.$ by defining $\hat{V}_{w}(\mathbf{r}, \mathbf{p})=\frac{1}{i \hbar} \frac{1}{(2 \pi)^{3}} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right) \hat{B}_{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$
and given that $\frac{1}{i \hbar} \int d \mathbf{r}^{\prime} \exp \left(-i \mathbf{k} \cdot \mathbf{r}^{\prime}\right) \nabla V(\mathbf{r}) \cdot \mathbf{r}^{\prime}=\frac{(2 \pi)^{3}}{\hbar} \nabla V \delta^{\prime}(\mathbf{k})$
\rightarrow we can separate the effect of the classical force \mathbf{F} from quantum effects:

$$
\int d \mathbf{k}^{\prime} V_{w}\left(\mathbf{r}, \mathbf{k}-\mathbf{k}^{\prime}\right) f_{w}\left(\mathbf{r}, \mathbf{k}^{\prime}\right)=-\frac{1}{\hbar} \mathbf{F} \cdot \nabla_{\mathbf{k}} f_{w}+\int d \mathbf{k}^{\prime} \hat{V}_{w}\left(\mathbf{r}, \mathbf{k}-\mathbf{k}^{\prime}\right) f_{w}\left(\mathbf{r}, \mathbf{k}^{\prime}\right)
$$

Connection between Wigner TE and Boltzmann TE

Finally, the WTE writes:

$$
\frac{\partial f_{w}}{\partial t}+\frac{\hbar}{m} \mathbf{k} \cdot \nabla_{\mathbf{r}} f_{w}+\frac{1}{\hbar} \mathbf{F} \cdot \nabla_{\mathbf{k}} f_{w}=\int d \mathbf{k}^{\prime} \hat{V}_{w}\left(\mathbf{r}, \mathbf{k}-\mathbf{k}^{\prime}\right) f_{w}\left(\mathbf{r}, \mathbf{k}^{\prime}\right)
$$

compared with the BTE:

$$
\frac{\partial f}{\partial t}+\frac{\hbar}{m} \mathbf{k} \cdot \nabla_{\mathbf{r}} f+\frac{1}{\hbar} \mathbf{F} \cdot \nabla_{\mathbf{k}} f=0
$$

If we can separate $V(\mathbf{r})$ into: $V(\mathbf{r})=V_{\text {slow }}(\mathbf{r})+V_{\text {rapid }}(\mathbf{r})$

$$
\frac{\partial f_{w}}{\partial t}+\frac{\hbar}{m} \mathbf{k} \cdot \nabla_{\mathbf{r}} f_{w}-\frac{1}{\hbar} \nabla V_{\text {slow }} \cdot \nabla_{\mathbf{k}} f_{w}=\hat{Q}\left[V_{\text {rapid }}\right] f_{w}
$$

Scattering in the Wigner Transport Equation

The simple method: instantaneous perturbation process
\rightarrow Boltzmann collision operator $\hat{C}:$ it operates on the Wigner function f_{w}

$$
\begin{aligned}
\hat{C} f_{w}=\sum_{i} & {\left[\int f_{w}\left(\mathbf{r}, \mathbf{k}^{\prime}\right)\left[1-f_{w}(\mathbf{r}, \mathbf{k})\right] S_{i}\left(\mathbf{k}^{\prime}, \mathbf{k}\right) d \mathbf{k}^{\prime}\right.} \\
& \left.-\int f_{w}(\mathbf{r}, \mathbf{k})\left[1-f_{w}\left(\mathbf{r}, \mathbf{k}^{\prime}\right)\right] S_{i}\left(\mathbf{k}, \mathbf{k}^{\prime}\right) d \mathbf{k}^{\prime}\right]
\end{aligned}
$$

where $\left.S_{i}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\frac{2 \pi}{\hbar}\left|\left\langle\mathbf{k}^{\prime}\right| H_{i}\right| \mathbf{k}\right\rangle\left.\right|^{2} \rho_{\mathbf{k}^{\prime}} \delta\left(E^{\prime}-E\right)$
$\leadsto \frac{\partial f_{w}}{\partial t}+\frac{\hbar}{m} \mathbf{k} \cdot \nabla_{\mathbf{r}} f_{w}+\frac{1}{\hbar} \mathbf{F} \cdot \nabla_{\mathbf{k}} f_{w}=\hat{Q} f_{w}+\hat{C} f_{w}$

Strong analogy between BTE and WTE \Rightarrow posibility of using the same numerical technique

Wigner Function and Green Functions

$$
f_{w}=-i \hbar G^{<}
$$

Monte Carlo solution of the WTE

$$
\frac{\partial f_{w}}{\partial t}+\frac{\hbar}{m} \mathbf{k} \cdot \nabla_{\mathbf{r}} f_{w}+\frac{1}{\hbar} \mathbf{F} \cdot \nabla_{\mathbf{k}} f_{w}=\int d \mathbf{k}^{\prime} \hat{V}_{w}\left(\mathbf{r}, \mathbf{k}-\mathbf{k}^{\prime}\right) f_{w}\left(\mathbf{r}, \mathbf{k}^{\prime}\right)
$$

Idea : representing the Wigner fonction f_{w} as a sum of Dirac excitations in r et k, with an amplitude A (affinity) which changes

$$
f_{w}(r, k)=\sum_{i} \delta\left(r-r_{i}\right) \delta\left(k-k_{i}\right) A_{i}
$$

* pseudo-particule i characterized by : $\left\{\begin{array}{l}r_{i} \rightarrow \text { classical evolution } \\ k_{i} \rightarrow \text { classical evolution }\end{array}\right.$
$A_{i} \rightarrow$ quantum evolution
The A_{i} may be negative
* classical limit : $A_{i}=1$ ("real" particule)
\Rightarrow We can use the standard Monte Carlo algorithm, by including the evolution of affinities

In a cell $c(\mathbf{r}, \mathbf{k})$:

$$
\sum_{i \in c(\mathbf{r}, \mathbf{k})} \frac{d A_{i}}{d t}=\hat{Q}\left[V_{\text {rapid }}\right] f_{w}(\mathbf{r}, \mathbf{k})
$$

Interaction of a wave packet on a square barrier

GaAs/GaAIAs Resonant Tunneling Diode (RTD)

* Ballistic limit (no scattering)
* Comparison with Non-Equilibrium Green Function calculation

Electron Density

——Resonance ($\mathrm{V}=0.3 \mathrm{~V}$)
----- Off-resonance (V=0.475V)

Effect of scattering

Scattering \Rightarrow reduction of Peak-to-Valley Ratio Ipeak/Ivalley

Transport in semiconductor nanodevices

Third part: Semiconductor quantum dots and Coulomb blockade for single-electron devices
4. Coulomb blockade in conducting island: principle
5. Electronic structure of semiconductor quantum dot
6. Single electron tunneling: I-V characteristics

* Tunnel transfer hamiltonian
* Metallic vs Semiconductor quantum dot
* Monte Carlo simulation - Example: MISiIM

4. Coulomb blockade in conducting island: principle

The quantum capacitor

* Classical capacitor:
* Quantum capacitor:
$\frac{e^{2}}{2 C} \gg k_{B} T$

$$
Q=C \cdot V
$$

Displacement Current: $I(t)=\frac{d q}{d t}$
(no charge flow through the insulator)
Electrostatic energy in the capacitor:

$$
E=\int_{0}^{\infty} V(t) I(t) d t=\frac{Q^{2}}{2 C}
$$

The double tunnel junction structure

island (or quantum dot) weakly coupled to to two leads to an external circuit via 2 tunnel junctions

\Rightarrow control of the current electron by electron

The principle of Coulomb blockade

Basic structure: The double tunnel junction
\rightarrow conducting island weakly coupled to to 2 leads (external circuit) via 2 tunnel junctions
tunnel junction $\mathrm{J}_{1} \quad$ island \quad tunnel junction J_{2}

Charging energy : $E_{c h}=\frac{e^{2}}{C_{\Sigma}}$ (additional energy in the island for 1 additional electron)

where $C_{\Sigma}=C+C^{\prime}$
Coulomb blockade effect may occur if :

$$
\begin{align*}
& \frac{e^{2}}{C_{\Sigma}}>k_{B} T \\
\Rightarrow & C_{\Sigma}<10^{-18} \mathrm{~F}=1 \mathrm{aF} \tag{300~K}\\
\Rightarrow & \text { nanometer island }
\end{align*}
$$

The principle of Coulomb blockade

Basic structure: The double tunnel junction
\rightarrow conducting island weakly coupled to to 2 leads (external circuit) via 2 tunnel junctions
tunnel junction $\mathrm{J}_{1} \quad$ island \quad tunnel junction J_{2}

Charging energy : $E_{c h}=\frac{e^{2}}{C_{\Sigma}}$ (additional energy in the island for 1 additional electron)

The principle of Coulomb blockade

Basic structure: The double tunnel junction
\rightarrow conducting island weakly coupled to to 2 leads (external circuit) via 2 tunnel junctions
tunnel junction $\mathrm{J}_{1} \quad$ island \quad tunnel junction J_{2}

Charging energy : $E_{c h}=\frac{e^{2}}{C_{\Sigma}}$ (additional energy in the island for 1 additional electron)

The MIMIM structure: electrical modelling

Basic equations:

$$
\left\{\begin{array} { l }
{ Q + Q _ { 1 } - Q _ { 2 } = 0 } \\
{ Q = - n e } \\
{ Q _ { 1 } = C _ { 1 } V _ { 1 } } \\
{ Q _ { 2 } = C _ { 2 } V _ { 2 } } \\
{ V = V _ { 1 } + V _ { 2 } }
\end{array} \rightarrow \left\{\begin{array}{l}
V_{1}=\left(C_{2} V+n e\right) / C_{e q} \\
V_{2}=\left(C_{1} V-n e\right) / C_{e q}
\end{array}\right.\right.
$$

Basic idea:

Calculation of the total energy E of the system:

$$
\begin{gathered}
E=E_{p}+W_{1} \\
\text { potential (electrostatic) } \\
\text { energy }
\end{gathered} \quad \text { work done by the }
$$

* Potential energy:

$$
\begin{aligned}
& E_{p}=\frac{Q_{1}^{2}}{2 C_{1}}+\frac{Q_{2}^{2}}{2 C_{2}}=\frac{C_{1} V_{1}^{2}}{2}+\frac{C_{2} V_{2}^{2}}{2} \quad \text { i.e. with } C_{e q}=C_{1}+C_{2}: \\
& E_{p}=\frac{1}{2 C_{e q}}\left[C_{1} C_{2} V^{2}+(n e)^{2}\right]
\end{aligned}
$$

The MIMIM structure: electrical modelling

* Work done by the source:

$$
W=\int V(t) I(t) d t=V \Delta Q \quad \text { with } \quad V(t)=V=\text { Const }
$$

@ a single electron tunneling through J_{1} or J_{2} is possible only if it leads to a lower total energy

$\mathrm{J}_{2} \equiv$ resistance
$\mathrm{J}_{1} \equiv$ capacitance

$$
\left(n_{2} \rightarrow n_{2}+1 \Rightarrow n \rightarrow n-1\right)
$$

$$
\begin{gathered}
V_{1} \rightarrow V_{1}-\frac{e}{C_{e q}} \\
\Delta V_{1}=-\frac{e}{C_{e q}} \Rightarrow \Delta Q_{1}=-e \frac{C_{1}}{C_{e q}}
\end{gathered}
$$

The voltage source compensate this charge variation by providing ΔQ_{1}
For n_{2} electrons the source provide the work:

$$
W_{1}=-e \frac{C_{1}}{C_{e q}} n_{2} V
$$

\rightarrow tunneling in the island via J_{1} :

$$
\begin{array}{|l}
\mathrm{J}_{1} \equiv \text { resistance } \\
\mathrm{J}_{2} \equiv \text { capacitance } \\
\hline
\end{array}
$$

For n_{1} electrons the source provide the work:

$$
W_{2}=-e \frac{C_{2}}{C_{e q}} n_{1} V
$$

The MIMIM structure: electrical modelling

* Total energy: Finally,

$$
E=\frac{1}{2 C_{e q}}\left[C_{1} C_{2} V^{2}+(n e)^{2}\right]+e \frac{V}{C_{e q}}\left(n_{1} C_{2}+n_{2} C_{1}\right)
$$

* Possible transitions:
\rightarrow Junction 2: $\quad n_{2} \rightarrow n_{2}+1 \Rightarrow n \rightarrow n-1 \Rightarrow \Delta E_{n_{2}+1}=\frac{e}{2 C_{e q}}\left[-(2 n-1) e+2 V C_{1}\right]$

$$
n_{2} \rightarrow n_{2}-1 \Rightarrow n \rightarrow n+1 \Rightarrow \Delta E_{n_{2}-1}=\frac{e}{2 C_{e q}}\left[+(2 n-1) e-2 V C_{1}\right]
$$

\rightarrow Junction 1: $\quad n_{1} \rightarrow n_{1}+1 \Rightarrow n \rightarrow n+1 \Rightarrow \Delta E_{n_{1}+1}=\frac{e}{2 C_{e q}}\left[+(2 n+1) e+2 V C_{2}\right]$

$$
n_{1} \rightarrow n_{1}-1 \Rightarrow n \rightarrow n-1 \Rightarrow \Delta E_{n_{1}-1}=\frac{e}{2 C_{e q}}\left[-(2 n-1) e-2 V C_{2}\right]
$$

Threshold voltages: $(\Delta E \leq 0)$

$$
\left\{\begin{array}{l|l|}
\Delta E_{n_{2}+1}<0 & \Rightarrow \\
\Delta E_{n_{2}-1}<0 & V \\
\Delta E_{n_{1}+1}<0 & \Rightarrow \\
\Delta E_{n_{1}-1}<0 & \Rightarrow(2 n+1) e / 2 C_{1} \\
& V<-(2 n+1) e / 2 C_{2} \\
V<-(2 n-1) e / 2 C_{2}
\end{array}\right.
$$

* For $n=0$:

Coulomb blockade for:

$$
|V|<V_{t h}=\frac{e}{2 C}
$$

The MIMIM structure: electrical modelling

* For any n value:

Possible transitions in a MIMIM structure at $\boldsymbol{T}=\mathbf{0} \mathrm{K}$

The Single Electron Transistor (SET)

$$
\left\{\begin{array}{l}
Q=Q_{2}-Q_{1}-Q_{G} \\
Q=-n e+q_{0} \\
Q_{1}=C_{1} V_{1} \\
Q_{2}=C_{2} V_{2} \\
Q_{G}=C_{G}\left(V_{G S}-V_{2}\right) \\
V_{D S}=V_{1}+V_{2}
\end{array}\right.
$$

The gate electrode allows controlling the Fermi level in the dot

Third part: Semiconductor quantum dots and Coulomb blockade for single-electron devices
4. Coulomb blockade in conducting island: principle
5. Electronic structure of semiconductor quantum dot
6. Single electron tunneling: I-V characteristics

* Tunnel transfer hamiltonian
* Metallic vs Semiconductor quantum dot
* Monte Carlo simulation - Example: MISiIM

Calculation of QD electronic structure

The problem : small number of electrons in a small SC QD

- nanometer size in semiconductor : quantization effect
\rightarrow Shrödinger equation is to be solved
- few electrons : Fermi statistics does not apply
\rightarrow electostatic interaction is to be included properly
Hamiltonian:

Schrödinger Equation:

$$
H \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)=E \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)
$$

Problem similar to the case of atoms

Electronic structure: Numerical techniques

The simplest case:

- spherical quantum dot
- 1 electron
- no bias

$$
\left[-\frac{\hbar^{2}}{2} \nabla_{\vec{r}}\left(\frac{1}{m} \nabla_{\vec{r}}\right)+V_{\text {conf }}(\vec{r})\right] \Psi(\vec{r})=E \Psi(\vec{r})
$$

$V_{0}=3.1 \mathrm{eV}$	
Si	SiO_{2}

spherical symmetry \rightarrow spherical harmonics

Electronic structure: Numerical techniques

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Electronic structure: Numerical techniques

The general case: approximations are required to solve the Schrödinger Eq.

* The Hatree method

$\psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)=\psi_{1}\left(\vec{r}_{1}\right) \psi_{2}\left(\vec{r}_{2}\right) \cdots \psi_{N}\left(\vec{r}_{N}\right)$
\int - easy to implement

- w. function is not antisymetric
(correlations not included)
- should be limited to $N=2$

* The Hatree-Fock method

\(\left.\left|\begin{array}{l}\psi\left(\vec{r}_{1}, \vec{r}_{2}, ···, \vec{r}_{N}\right)=\frac{1}{\sqrt{N!}}

(Slater determinant)\end{array}\right|\)| $\psi_{1}\left(\vec{r}_{1}\right)$ | $\psi_{1}\left(\vec{r}_{2}\right)$ | \cdots | $\psi_{1}\left(\vec{r}_{N}\right)$ |
| :---: | :---: | :---: | :---: |
| $\psi_{2}\left(\vec{r}_{1}\right)$ | $\psi_{2}\left(\vec{r}_{2}\right)$ | \cdots | $\psi_{2}\left(\vec{r}_{N}\right)$ |
| \cdots | \cdots | \cdots | \cdots |
| $\psi_{N}\left(\vec{r}_{1}\right)$ | $\psi_{N}\left(\vec{r}_{2}\right)$ | \cdots | $\psi_{N}\left(\vec{r}_{N}\right)$ | \right\rvert\,\(\left\{\begin{array}{c}- correct approach for any N

- w. function is antisymetric

(correlations included)

- difficult to implement\end{array}\right.\)

* The Density Functional Theory (DFT)

It assumes the system can be fully described by the electron density

- rigorous for any N
- correlations included
- less information given: only total energy no wave function

Electronic structure: Hartree method

Hartree: $\quad \psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)=\psi_{1}\left(\vec{r}_{1}\right) \psi_{2}\left(\vec{r}_{2}\right) \cdots \psi_{N}\left(\vec{r}_{N}\right)$
1 equation for each electron: $\quad H_{i} \psi_{i}=E_{i} \psi_{i}$

$$
\begin{equation*}
\text { with : } \quad H_{i}=\frac{p_{i}^{2}}{2 m}+V_{\text {conf }}\left(\vec{r}_{i}\right)+V_{\text {inter }}^{i}\left(\vec{r}_{i}\right) \tag{nobias}
\end{equation*}
$$

$V_{\text {inter }}$ represents the interaction of electron i with the rest of the electronic cloud of density ρ_{i}

$$
\rho_{i}(\vec{r})=-e \sum_{\substack{j=0 \\ j \neq i}}^{N}\left|\psi_{j}(\vec{r})\right|^{2} \quad \text { and } \quad \vec{\nabla}\left(\varepsilon \varepsilon_{0} \vec{\nabla} V_{\text {inter }_{i}}\right)=e \rho_{i}
$$

system of coupled
Poisson / Schrödinger equations

$$
\left\{\begin{array}{l}
\vec{\nabla}\left(\varepsilon \vec{\nabla} V_{\text {inter }_{i}}\right)=-\frac{e}{\varepsilon \varepsilon_{0}} \sum_{j \neq i}^{N}\left|\psi_{j}(\vec{r})\right|^{2} \\
\frac{p_{i}^{2}}{2 m} \psi_{i}+\left(V_{\text {conf }}+V_{\text {inter }}^{i}\right.
\end{array}\right) \psi_{i}=E_{i} \psi_{i}
$$

Electronic structure: results of Hartree

For a discrete number of electrons N, the chemical potential $\mu(N)$ is defined as the variation of total energy resulting from one additional electron:

$$
\mu(N)=\frac{\partial E_{\text {TOT }}}{\partial N} \simeq \frac{E(N)-E(N-1)}{N-(N-1)}=E(N)-E(N-1)
$$

spherical quantum dot

Chemical Potential as a function of QD radius

$$
\text { for } N=1 \text { to } N=15
$$

(including the difference in effective mass and dielectric constant between Si and SiO_{2})

Electronic structure: results of Hartree

For a discrete number of electrons N, the chemical potential $\mu(N)$ is defined as
the variation of total energy resulting from one additional electron:

$$
\mu(N)=\frac{\partial E_{T O T}}{\partial N} \simeq \frac{E(N)-E(N-1)}{N-(N-1)}=E(N)-E(N-1)
$$

Electronic structure: results of Hartree

For a discrete number of electrons N, the chemical potential $\mu(N)$ is defined as the variation of total energy resulting from one additional electron:

$$
\mu(N)=\frac{\partial E_{\text {TOT }}}{\partial N} \simeq \frac{E(N)-E(N-1)}{N-(N-1)}=E(N)-E(N-1)
$$

spherical quantum dot

Chemical Potential as a function of QD radius

$$
\text { for } N=1 \text { to } N=15
$$

Electron Density
for $R=3 \mathrm{~nm}$

Electronic structure: Comparison Hartree I DFT

Validity of effective mass approximation

Calculation of the first levels in Si-NC using 2 approaches :
\rightarrow effective mass approximation (DFT)
\rightarrow tight binding calculation (LCAO)
[Sée et al., Phys. Rev. B 66 (2002) 193307]

dangling bonds saturated with H atoms

Electronic Structure: Density of States

Electronic Structure: Density of States

Electronic structure: Effect of bias (method)

For a biased quantum dot :

$V_{\text {bias }}$ can be obtained from the following Poisson's equation:

$$
\vec{\nabla}\left(\varepsilon \varepsilon_{0} \vec{\nabla} V_{\text {bias }}\right)=0
$$

with $\left\{\begin{array}{l}V_{\text {bias }}(x=0, y, z)=0 \\ V_{\text {bias }}(x=L, y, z)=V\end{array}\right.$
\rightarrow all goes as if electrons evolve in a new effective potential $V_{\text {conf }}+V_{\text {bias }}$

Electronic structure: Effect of bias (result)

Energy level and maximum number of electrons stored in the dot

Electronic structure: Effect of bias (results)

Influence of bias on the density (wave function) in the dot
$\mathrm{R}=6 \mathrm{~nm}$
Example: electron density for 1 electron in the dot

Electronic structure: Effect of bias (results)
\square

Third part: Semiconductor quantum dots and Coulomb blockade for single-electron devices
4. Coulomb blockade in conducting island: principle
5. Electronic structure of semiconductor quantum dot
6. Single electron tunneling: I-V characteristics

* Tunnel transfer hamiltonian
* Metallic vs Semiconductor quantum dot
* Monte Carlo simulation - Example: MISiIM

Single electron tunneling through a single barrier

* 1st method: (Schrödinger equation)
- calculation of the eigen states of the system
- transmission coefficient and probability current

Single electron tunneling through a single barrier

Solution of Schrödinger equation for a 1D barrier

Single-electron tunneling

Single-electron tunneling

Single-electron tunneling

Tunnel Hamiltonian - Perturbative technique

$$
\delta^{2} \Gamma_{k_{L} \rightarrow k_{R}}=\frac{2 \pi}{\hbar}|M|^{2} \rho_{L}\left(E_{L}\right) \rho_{R}\left(E_{R}\right) f_{L}\left(E_{L}\right)\left[1-f_{R}\left(E_{R}\right)\right] \delta\left(E_{R}-E_{L}\right) d E_{L} d E_{R}
$$

$$
\text { Total probability per unit of time: } \Gamma_{L \rightarrow R}=\int \delta^{2} \Gamma_{k_{L} \rightarrow k_{D}}
$$

$$
\left.\Gamma_{L \rightarrow R}=\int \frac{2 \pi}{\hbar}\left|\left\langle k_{R}\right| H_{T}\right| k_{L}\right\rangle\left.\right|^{2} \rho_{L}(E) \rho_{R}(E) f_{L}(E)\left[1-f_{R}(E)\right] d E
$$

Matrix element (Bardeen):

$$
\left.M=\left\langle k_{R}\right| H_{T}\left|k_{L}\right\rangle=\frac{\hbar^{2}}{2} \iint_{S_{B}}\left[\psi_{L}\left[M_{B}\right]^{-1} \vec{\nabla} \overline{\psi_{R}}-\overline{\psi_{R}}\left[M_{B}\right]^{-1} \vec{\nabla} \psi_{L}\right] d \vec{S}\right] \text { surface of the barrier }
$$

Single-electron tunneling

Current: approximation of the tunnel resistance

Equations of the previous slide yield:

$$
\begin{aligned}
& I=-e \frac{2 \pi}{\hbar} \int|M|^{2} \rho_{L}(E) \rho_{R}(E)\left[f_{L}(E)-f_{R}(E)\right] d E \\
& \quad \text { where } f_{L / R}(E)=f\left(E-E_{F_{L / R}}\right)=\frac{1}{1+\exp \left(\frac{E-E_{F_{L / R}}}{k_{B} T}\right)} \\
& \text { ion of low temperature: }
\end{aligned}
$$

* Approximation of low temperature:
\Rightarrow Fermi functions are step functions

$$
I \approx e \frac{2 \pi}{\hbar} \int_{E_{F_{L}}}^{E_{F_{R}}}|M|^{2} \rho_{L}(E) \rho_{R}(E) d E
$$

* Approximation of low bias voltage: $-e V=E_{F_{R}}-E_{F_{L}}$ weak $\Rightarrow\left\{\begin{array}{l}\rho_{R}(E) \approx \text { const }=\rho_{R_{0}} \\ \rho_{L}(E) \approx \text { const }=\rho_{L_{0}} \\ |M|^{2} \approx \text { const }\end{array}\right.$
$R_{t}=\frac{\hbar}{2 \pi e^{2} \rho_{R_{0}} \rho_{L_{0}}|M|^{2}}$
is the tunnel resistance (hard approximation)

MIM structure: decomposition in 2 hamiltonians

MIM structure: wave functions

$$
\begin{aligned}
& \text { WKB approximation in the barrier: } \quad \psi(x) \approx \psi(0) \exp \left(-\int_{0}^{X} \sqrt{\left(2 m / \hbar^{2}\right)\left(V\left(x^{\prime}\right)-E\right)} d x^{\prime}\right) \\
& \psi_{L}(x)=\left\{\begin{array}{l}
\left.A_{L} \sin \left[k_{1}\left(x+L_{L}+d / 2\right)\right]^{\text {if }} \begin{array}{l}
-\left(L_{L}+d / 2\right) \leq x<-d / 2 \\
A_{L} \sin \left[k_{1} L_{L}\right] \exp \left[-\alpha \frac{2 d}{3 V} \frac{1}{\sqrt{V_{0}-E}}\left(\left[\frac{x}{d} V+V_{0}-E\right]^{3 / 2}-\left[-\frac{1}{2} V+V_{0}-E\right]^{3 / 2}\right)\right] \\
A_{L} \sin \left[k_{1} L_{L}\right] \exp \left[-\alpha \frac{2 d}{3 V} \frac{1}{\sqrt{V_{0}-E}}\left(\left[V_{0}-E\right]^{3 / 2}-\left[-\frac{1}{2} V+V_{0}-E\right]^{3 / 2}\right)\right] \\
0 \\
\text { if } 0 \leq x
\end{array}\right]
\end{array}\right. \\
& \text { normalisation: }\left|A_{L}\right|_{L_{L} \rightarrow \infty}^{2}=\frac{2}{L_{L}} \\
& \text {... and similar results for the right electrode } \\
& \rightarrow \text { straightforward calculation of transition rates and current }
\end{aligned}
$$

Current: comparison of the methods (MIM structure)

Calculation of current: Monte Carlo

Exactly the same idea as for the Monte Carlo method for solving the BTE

$$
\begin{aligned}
& \text { collision } \rightarrow \text { tunneling event } \\
& \text { time of free flight } \rightarrow \text { time without tunneling event } \\
& \Rightarrow \text { series of "free flights" interrupted by tunneling events }
\end{aligned}
$$

using 2 random numbers R_{1}, R_{2} :

$$
t_{f}=-\frac{\ln \left(R_{1}\right)}{\sum_{i} \Gamma_{i}}
$$

$$
\sum_{i=1}^{j} \Gamma_{i}
$$

for a set of T possible tunneling events:
$g_{j}(E)=\frac{\sum_{i=1}^{T}}{\sum_{i=1}^{T} \Gamma_{i}}$

\rightarrow in this case the tunneling event i is selected

M-I-Si-I-M structure: I-V characteristics

Current-Voltage characteristics

Effect of the size of the quantum dot

$$
\begin{array}{r}
\text { barrier thicknesses: } T_{L}=1.5 \mathrm{~nm} \\
T_{R}=1.2 \mathrm{~nm} \\
\hline
\end{array}
$$

Current-Voltage characteristics

Effect of the size of the quantum dot

barrier thicknesses: | T_{L} | $=1.5 \mathrm{~nm}$ |
| ---: | :--- |
| T_{R} | $=1.2 \mathrm{~nm}$ |

$\mathrm{T}=30 \mathrm{~K}$

Current-Voltage characteristics

Effect of the size of the quantum dot

barrier thicknesses: | T_{L} | $=1.5 \mathrm{~nm}$ |
| ---: | :--- |
| T_{R} | $=1.2 \mathrm{~nm}$ |

$\mathrm{T}=30 \mathrm{~K}$

Current-Voltage characteristics

Current-Voltage characteristics

Influence of temperature on NDR effect

Is the future of single-electron devices in the use of NDR instead of Coulomb staircase?

Influence of the shape of the dot

