Monte Carlo Simulation of Electron Transport in Semiconductor Nanodevices

Philippe Dollfus

Institute of Fundamental Electronics (IEF) CNRS – University of Paris-Sud (UPS) Orsay, France philippe.dollfus@ief.u-psud.fr

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Research topics

Different kind of devices:

- \rightarrow in strong connection with industrial R&D:
- "conventional" transistors (MOSFET, HEMT, …): towards nm scale
 → more advanced devices for nanoelectronics:
- quantum dots and single electron devices
- quantum wires, carbon nanotubes and related devices
- resonant tunelling diode
- Different approaches to transport modelling:
 - Semi-classical Boltzmann transport equation (Monte Carlo)
 - Single electron tunnelling (Master equation and Monte Carlo)
 - Quantum transport equations
 - Non-Equilibrium Green function (tight-binding)
 - Wigner function (Monte Carlo)
- Device simulator associated with these modelling techniques:

Members of the group

Permanent researchers:

Engineer: Christophe Chassat

3

Valérie Aubry-Fortuna Arnaud Bournel Sylvie Galdin-Retailleau Johann Sée Philippe Dollfus

PhD students:

Emmanuel Fuchs (also with ST, Grenoble) [compact modelling of nano-MOSFETs] Jérôme Saint Martin [ballistic effects and quantization effects in nano-MOSFETs] Marie-Anne Jaud (also with CEA-LETI, Grenoble) [quantum corrections in MC algorithms] Do Van Nam (also with IOP, Hanoi) [quantum transport in nanodevices, NEGF] Hugues Cazin (also with CEA-SCM, Saclay) [transport in carbon nanotubes and transistors] Damien Querlioz [quantum transport, Wigner function] Audrey Valentin [single-electron devices, QDs] Karim Huet (also with ST, Grenoble) [device simulation using full-band description]

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Microelectronics and CMOS limits

The future: nanoelectronics and bottom-up

The evolution of microelectronics: towards nanoelectronics

Transport in semiconductor nanodevices

<u>Contents</u>		
First part:	1. From the crystal to the transport equation	
	2. Classical transport: the Boltzmann transport equation	
	* distribution Function and transport equation	
	* Scattering	
	* Solution: the particle Monte Carlo method	
	* Examples of applications: MOSFET, CNT	
Second part:	3. Quantum transport: the Wigner transport equation	
	* Wigner function and transport equation	
	* Solution: the particle Monte Carlo method	
	* Examples of applications: RTD	
Third part:	4. Coulomb blocade in conducting island: principle	
	[5. Electronic structure of semiconductor quantum dot]	
	6. Single electron tunneling: I-V characteristics	
	* Tunnel transfer hamiltonian	
	* Metallic vs Semiconductor quantum dot	
	* Monte Carlo simulation – Examples: MISiIM	

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Transport in semiconductor nanodevices

1. From the crystal to the transport equation

The semiconductor crystal

The semiconductor crystal

The crystal Hamiltonian

The crystal Hamiltonian: approximations

The crystal Hamiltonian: approximations

 $\begin{array}{c} @ 2nd approximation: ("adiabatic" or "Born-Oppenheimer") \\ & electrons much slower than ions \\ \Rightarrow Electrons can instantaneously adjust their motion to that of the ions. \\ \Rightarrow Thus the wave function is approximately of the form: \\ & \mathcal{\Psi} = \mathcal{\Psi}_e\left(\vec{r}, \vec{R}_0\right) \mathcal{\Psi}_{ion}\left(\vec{R}\right) \\ \text{where: } \begin{cases} \mathcal{\Psi}_{ion}(\vec{R}) & \text{is the wavefunction for all the ions (independent on electron position)} \\ & \mathcal{\Psi}_e(\vec{r}, \vec{R}_0) & \text{is the wavefunction for electrons (instantaneously dependent on ion position)} \\ & \mathcal{H} = H_{ion}\left(\vec{R}\right) + H_e\left(\vec{r}, \vec{R}_0\right) + H_{e-ion}\left(\vec{r}, \delta \vec{R}\right) & \text{with} \quad \delta \vec{R} = \vec{R} - \vec{R}_0 = \vec{S} \\ & \begin{cases} H_{ion}(\vec{R}) = \sum_{l} \frac{p_l^2}{2M} + \frac{1}{2} \sum_{l,m} U(\vec{R}_l - \vec{R}_m) & \text{acts only on the ions} \\ H_e(\vec{r}, \vec{R}_0) = \sum_{l} \frac{p_l^2}{2m} + \frac{1}{2} \sum_{l,j} \frac{q^2/4\pi \varepsilon_0}{|\vec{r}_l - \vec{r}_j|} + \sum_{i,l} V\left(\vec{r}_l - \vec{R}_{0_l}\right) & \text{acts only on the electrons} \\ H_{e-ion}(\vec{r}, \delta \vec{R}) & \text{is the effect of ion displacement on electrons (usually small perturbation)} \end{cases} \\ \end{array}$

The crystal Hamiltonian: approximations

The crystal Hamiltonian: summary

ion equation: (all ions)	Treatment:
\implies $H_{ion}\left(\vec{R}\right)\Psi_{ion}\left(\vec{R}\right) = E_{ion}\Psi_{ion}\left(\vec{R}\right)$ gives the phonon spectra	quantum
electron equation: (one electron)	
$\left[\frac{p^2}{2m} + V_c(\vec{r}) + V_{scatt}(\vec{r}) + V_{ext}(\vec{r})\right] \Psi(\vec{r}) = E \Psi(\vec{r})$	
$\implies \left[\frac{p^2}{2m} + V_c(\vec{r})\right] \Psi(\vec{r}) = E \Psi(\vec{r}) \text{ gives the band structure}$	quantum
$V_{scatt}(\vec{r})$ and $V_{ext}(\vec{r})$ are considered as weak perturbations	
\implies $V_{scatt}(\vec{r})$: scatterings (transitions between allowed states)	quantum
$\implies V_{ext}(\vec{r})$: transport phenomena	classical or quantum

Semiconductor band structure

Effective mass end equi-energy surfaces in band extrema

Electron kinematics – acceleration effective mass

Density of states in k-space

semiconductor of finite size \Rightarrow finite number of k values allowed * in a periodic linear (1D) chain of N atoms of length $L_x = N a$, we impose periodic boundry conditions: $\Psi(0) = \Psi(0 + N a) \Rightarrow u_k(0) = \exp(ik_x N a) u_k(N a) \Rightarrow \exp(ik_x N a) = 1$ so only discrete values are possible: $k_x = n_x \frac{2\pi}{L_x}$, $n_x = 1, 2, 3,...$ spin degeneracy \Rightarrow 2 possible states in each space $\frac{2\pi}{L_x}$ \rightarrow the density of states in k-space is $n(k_x) = 2 \times \frac{L_x}{2\pi}$ * in a 3D crystal of volume $\Omega = L_x L_y L_z$, \rightarrow the density of states in k-space is $n(\vec{k}) = 2 \times \frac{L_x}{2\pi} \times \frac{L_y}{2\pi} \times \frac{L_z}{2\pi} = \frac{V}{4\pi^3}$ \rightarrow the density of states n(E) in energy-space is deduced from: $\begin{cases} n(\vec{k}) d\vec{k} = n(E) dE \\ E(\vec{k}) \longleftarrow$ depends on the material

Density-of-states effective mass

Density-of-states effective mass

$$\rightarrow \Delta \text{ valleys (6) of Si (ellipsoidal):} \quad E(\vec{k}) = \frac{\hbar^2}{2m_0} \left(\frac{k_x^2}{m_l} + \frac{k_y^2}{m_t} + \frac{k_z^2}{m_t} \right)$$
$$n(E) = 6 \times \frac{V\sqrt{2}}{\pi^2 \hbar^3} (m_0)^{3/2} (m_l^{1/2} m_t)^{3/2} E^{1/2} \qquad (3D \text{ gas})$$
$$n(E) = \frac{V\sqrt{2}}{\pi^2 \hbar^3} (m_{DOS})^{3/2} E^{1/2} \qquad m_{DOS} = m_0 \left(6m_l^{1/2} m_t \right)^{2/3}$$

Quantum confinement: effective mass approximation

Electron transport in semiconductor nanodevices

	<u>Contents</u>
First part:	1. From the crystal to the transport equation
	2. Classical transport: the Boltzmann transport equation
	* distribution Function and transport equation
	* Scattering
	* Solution: the particle Monte Carlo method
	* Examples of applications: MOSFET, CNT
Second part:	3. Quantum transport: the Wigner transport equation
	* Wigner function and transport equation
	* Solution: the particle Monte Carlo method
	* Examples of applications: RTD
Third part:	4. Coulomb blocade in conducting island: principle
	[5. Electronic structure of semiconductor quantum dot]
	6. Single electron tunneling: I-V characteristics
	* Tunnel transfer hamiltonian
	* Metallic vs Semiconductor quantum dot
	* Monte Carlo simulation – Examples: MISiIM

2. Classical transport: The Boltzmann Transport Equation

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Distribution function

Classical approach:

The quantum properties of the electrons are neglected: one can specify at each time t the position \vec{r} and the wave vector \vec{k} (or the momentum \vec{p}).

The system is fully described by the distribution function $f(\vec{r}, \vec{k}, t)$

which is the probability to have an electron in state \vec{k} at position \vec{r} at time *t* \rightarrow all physical quantities related to the electron gas are deduced from the distribution function:

$$\stackrel{n(\vec{r},t) = \sum_{k} f(\vec{r},\vec{k},t) = \int \rho(k) f(\vec{r},\vec{k},t) d\vec{k}}{\underset{e.g.}{\underset{k}{\longrightarrow}}} \begin{cases} n(\vec{r},t) = \sum_{k} f(\vec{r},\vec{k},t) = \int \rho(k) r_{x}(\vec{k}) f(\vec{r},\vec{k},t) d\vec{k} \\ p_{x}(\vec{r},t) = \sum_{k} F(\vec{k}) f(\vec{r},\vec{k},t) = \int \rho(k) F(\vec{k}) f(\vec{r},\vec{k},t) d\vec{k} \end{cases}$$

At thermal equilibrium electrons obey the Fermi-Dirac statistics:

$$f\left(\vec{r},\vec{k},t\right) = f_0\left(\vec{r},\vec{k}\right) = \left[1 + \exp\left(\frac{E\left(\vec{r},\vec{k}\right) - E_f}{k_B T}\right)\right]^{-1} \qquad \begin{cases} E_f \text{ is the Fermi energy}\\ E\left(\vec{r},\vec{k}\right) = E_p\left(\vec{r}\right) + \varepsilon\left(\vec{k}\right)\\ & \uparrow & \uparrow & \uparrow \\ & \text{potential energy} \\ & \text{(bottom of CB)} \end{cases}$$

Boltzmann Transport Equation (BTE)

Collision term - scatterings

Electron-phonon scattering

 \rightarrow the energy of each mode ω_q is quantized according to:

$$E_{n_{\mathbf{q}}} = \hbar \omega_{\mathbf{q}} \left[n_{\mathbf{q}} + \frac{1}{2} \right] \qquad \qquad \varphi_{n_{\mathbf{q}}} = \left| n_{\mathbf{q}} \right\rangle = \text{Hermitian polynomial} \text{ of degree } n_{\mathbf{q}} \text{ in } \mathbf{q}$$

 \rightarrow the quantum of energy is a boson particle called *phonon*, whose number is given by:

$$n_{\mathbf{q}} = \frac{1}{\exp\left(\frac{\hbar\omega_{\mathbf{q}}}{k_B T}\right) - 1}$$

General expression for transition probability per unit of time from **k** to **k'** (per unit of volume $d\mathbf{k'}$)

$$S_{el-ph} (\mathbf{k}, \mathbf{k}') = \frac{\hbar}{8\pi^2} \frac{1}{\rho \hbar \omega_{\mathbf{q}}} \underbrace{\mathcal{O}_{\mathbf{q}}^2 \mathcal{G}(\mathbf{k}, \mathbf{k}')}_{\text{dependent on phonon process}} \begin{bmatrix} n_{\mathbf{q}} + \frac{1}{2} \pm \frac{1}{2} \end{bmatrix} \delta \left(E' - E \mp \hbar \omega \right)$$

$$\begin{cases} + : \text{emission} \\ - : \text{absorption} \end{cases}$$
where ρ is the mass density $D_{\mathbf{q}}$ is the coupling constant
$$\mathcal{G}(\mathbf{k}, \mathbf{k}') = \left| \int_{cell} d\mathbf{r} \ u_{\mathbf{k}'}^*(\mathbf{r}) \ u_{\mathbf{k}}(\mathbf{r}) \exp[i \mathbf{G} \cdot \mathbf{r}] \right|^2 \text{ is the overlap factor}$$

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Electron-phonon scattering

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Electron-phonon scattering

Electron-phonon scattering

Electron-impurity scattering

Solving the BTE for device simulation

$$\frac{\partial f}{\partial t} = -\vec{v} \cdot \vec{\nabla}_r f - \frac{\vec{F}}{\hbar} \cdot \vec{\nabla}_k f + \sum_i \left[\int f(\vec{k}') S_i(\vec{k}', \vec{k}) d^3 \vec{k}' - \int f(\vec{k}) S_i(\vec{k}, \vec{k}') d^3 \vec{k}' \right]$$

Starting from an initial solution, we have all information needed to calculate the time evolution of the distribution function f inside a device:

 \hat{k} - probabilities per time unit $S_iig(ec{k},ec{k}'ig)$ of scattering from state $ec{k}$ to state $ec{k}'$

- distribution of forces \vec{F} , e.g. by solving Poisson's equation

The BTE is a rather complicated integro-differential equation for *f* whose direct (deterministic) solution is impracticable in device simulation

- simplifying approximations: drift-diffusion (DD) and hydro-dynamic (HD) approaches

- statistical solution: Monte Carlo methods (MC)

The particle Monte Carlo method

Monte Carlo method: example of scattering rates (1)

Electron-phonon interaction by deformation potential coupling

* Acoustic intravalley scattering

 \rightarrow small energy and small wave vector phonon $\Rightarrow n_{\mathbf{q}} = \left[\exp\left(\frac{\hbar\omega_{\mathbf{q}}}{k_BT}\right) - 1\right]^{-1} \approx \frac{k_BT}{\hbar\omega_{\mathbf{q}}} - \frac{1}{2}$

 \rightarrow the exchange of energy is neglected (elastic approximation, E' = E) and both emission and absorption are considered through the same process

$$S_{ac}(\mathbf{k},\mathbf{k}') = \frac{k_B T}{4\pi^2} \frac{D_{ac}^2}{\rho \hbar v_s^2} \,\delta(E'-E) \quad \text{with} \quad E(1+\alpha E) = \frac{\hbar^2}{2m_0} \left(\frac{k_x^2}{m_l} + \frac{k_y^2}{m_t} + \frac{k_z^2}{m_t}\right)$$

$$\begin{split} \lambda_{ac}\left(\vec{k}\right) &= \int S_{ac}\left(\vec{k},\vec{k}'\right)d\vec{k}' & \text{change of variables:} \\ \vec{k}' &\to E, \theta, \varphi & d\vec{k} = J\left(E,\theta,\varphi\right)dE\,d\theta\,d\varphi \\ J\left(E,\theta,\varphi\right) &= \sqrt{2} \left(\frac{m_0}{\hbar^2}\right)^{3/2} (1+2\alpha E)\sqrt{E\left(1+\alpha E\right)}\sin\theta \left(\frac{\sin^2\theta}{m_t} + \frac{\cos^2\theta}{m_l}\right)^{-3/2} \\ \lambda_{ac}\left(E\right) &= \int S_{ac}\left(\vec{k},\vec{k}'\right)\,J\left(E,\theta,\varphi\right)dE\,d\theta\,d\varphi \end{split}$$

$$\lambda_{ac}\left(E\right) = \frac{\sqrt{2}}{\pi} \frac{k_B T}{\rho \hbar^4 v_s^2} m_{DOS}^{3/2} D_{ac}^2 \left(1 + 2\alpha E\right) \sqrt{E\left(1 + \alpha E\right)}$$

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Monte Carlo method: example of scattering rates (2)

Electron-phonon interaction by deformation potential coupling
* Intervalley scattering
$$(Z_{i\nu} \text{ possible final valleys})$$

zero order process: $D_{\mathbf{q}} = D_0$
 $S_{i\nu_0}(\mathbf{k}, \mathbf{k}') = Z_{i\nu} \frac{\hbar}{8\pi^2} \frac{D_0^2}{\rho \hbar \omega_{i\nu}} \left[n_{\mathbf{q}} + \frac{1}{2} \pm \frac{1}{2} \right] \delta(E' - E \mp \hbar \omega)$

$$\begin{cases} + : \text{ emission} \\ - : \text{ absorption} \end{cases}$$

$$\frac{\lambda_{i\nu_0}(E) = \frac{Z_{i\nu}}{\sqrt{2\pi}} \frac{1}{\rho \hbar^3 \omega_{i\nu}} m_{DOS}^{3/2} D_0^2 \left[n_{\mathbf{q}} + \frac{1}{2} \pm \frac{1}{2} \right] \left[1 + 2\alpha (E \mp \hbar \omega) \right] \sqrt{(E \mp \hbar \omega) (1 + \alpha (E \mp \hbar \omega))}$$
example: Si $(T = 300\text{K})$
 $D_{ac} = 9 \text{ eV}$
 $D_0 = 3.4 \times 10^8 \text{ eV/cm}$
intervalley ($\Delta - \Delta$) phonons:
 $g_1 \quad \hbar \omega_{i\nu} = 11.4 \text{ meV}$
 $g_2 \quad \hbar \omega_{i\nu} = 18.8 \text{ meV}$
 $g_3 \quad \hbar \omega_{i\nu} = 63.2 \text{ meV}$
 $f_1 \quad \hbar \omega_{i\nu} = 21.9 \text{ meV}$
 $f_2 \quad \hbar \omega_{i\nu} = 46.3 \text{ meV}$
 $f_3 \quad \hbar \omega_{i\nu} = 59.1 \text{ meV}$

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Monte Carlo method: flow chart

Monte Carlo method: selection of free-flight duration

1. Suppose
$$\lambda_{tot}(E) = \sum_{i} \lambda_i(E) = \text{Const} = \lambda_0$$

Consider n_{CF} = population of electrons that have not experienced any collision since t = 0 (CF = Collision-Free)

Each electron having the same scattering rate λ_0 , the time rate of change of n_{CF} is:

$$\frac{d n_{CF}}{dt} = -\lambda_0 \ n_{CF} \quad \Rightarrow \quad n_{CF} \left(t \right) = n_{CF} \left(0 \right) \exp\left(-\lambda_0 t \right)$$

 \rightarrow The probability that an electron has a free flight (no collision) during the time *t* is therefore:

$$\frac{n_{CF}(t)}{n_{CF}(0)} = \exp(-\lambda_0 t)$$

 \rightarrow The probability that an electron suffers a collision during the time interval dt is:

$$\lambda_0 di$$

 \Rightarrow The probability that an electron suffers its first collision between *t* and *t* + *dt* is:

$$P(t)dt = \exp(-\lambda_0 t) \times \lambda_0 dt$$

Monte Carlo method: selection of free-flight duration

Monte Carlo method: selection of free-flight duration

2. BUT
$$\lambda_{tot}(E) = \sum_{i} \lambda_i(E)$$
 is not constant
solution: we introduce a new interaction
fictitious interaction: self-scattering $\lambda_{sc}(E)$
 $\lambda_{tot}(E) + \lambda_{sc}(E) = \text{Const} = \lambda_0$
(if selected this interaction has no effect on the electron state)

Monte Carlo method: selection of scattering event

Monte Carlo method: selection of scattering event

Device Monte Carlo simulation: particle trajectories

Monte Carlo method: boundary conditions

MOSFET architectures (N-channel)

Study of nano-scaled DGMOS

Study of DGMOS: I_D-V_{DS} characteristics

Study of DGMOS: influence of gate length

Study of DGMOS: velocity distribution

Study of DGMOS: ballisticity

Conduction Band Structure of CNTs

Transient behaviour

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Transient behaviour

Electron transport in semiconductor nanodevices

	Contents		
First part:	1. From the crystal to the transport equation		
	2. Classical transport: the Boltzmann transport equation * distribution Function and transport equation * Scattering * Solution: the particle Monte Carlo method * Examples of applications: MOSFET, CNT		
Second part:	3. Quantum transport: the Wigner transport equation * Wigner function and transport equation * Solution: the particle Monte Carlo method * Examples of applications: RTD		
Third part:	4. Coulomb blocade in conducting island: principle [5. Electronic structure of semiconductor quantum dot]		
	6. Single electron tunneling: I-V characteristics * Tunnel transfer hamiltonian * Metallic vs Semiconductor quantum dot * Monte Carlo simulation – Examples: MISiIM		

3. Quantum transport: The Wigner Transport Equation

The Wigner formalism of quantum transport is based on a function defined in a (\mathbf{r},\mathbf{p}) phase space in strong analogy with the classical description of transport.

Let looks very appropriate to deal with space-dependent problems (device simulation)

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

The Wigner Function

- Semi-classical picture: electrons are described by specifying the distribution function

- Quantum mechanical picture: the phase relationship between the different states

for an electron with the wave function $\sum a_{f k} \ket{f k}$

must be specified

the density matrix is defined as $\rho(\mathbf{k}, \mathbf{k}') = a_{\mathbf{k}} a_{\mathbf{k}'}^*$

(in semi-classical approach, assuming the phase relaxation length to be very short, $f(\mathbf{k})$ is given by the diagonal elements of $\rho(\mathbf{k},\mathbf{k})$)

For any operator $\mathcal{A}: \langle \mathcal{A} \rangle = Tr(\rho \mathcal{A})$

Elementary definition of the Wigner function for an electron described by the wave function

 $\psi(\mathbf{r},t)$ normalized to 1 in the volume *V* of interest:

$$f_{w}(\mathbf{r},\mathbf{k},t) = \frac{1}{(2\pi)^{3}} \int d\mathbf{r}' \exp(-i\mathbf{k}\cdot\mathbf{r}') \langle \mathbf{r}+\mathbf{r}'/2|\rho(t)|\mathbf{r}-\mathbf{r}'/2\rangle$$
$$= \frac{1}{(2\pi)^{3}} \int d\mathbf{r}' \exp(-i\mathbf{k}\cdot\mathbf{r}') \psi(\mathbf{r}+\mathbf{r}'/2,t) \psi^{*}(\mathbf{r}-\mathbf{r}'/2,t)$$

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Some properties of the Wigner Function

* with this definition, we have: $\iint f_w(\mathbf{r}, \mathbf{k}) d\mathbf{k} d\mathbf{r} = 1$

* For an *N* particle system, we have: $\iint [N f_w(\mathbf{r}, \mathbf{k})] d\mathbf{k} d\mathbf{r} = N$

 \searrow $N \times f_w$ can be compared with the occupation number of quantum state **k**

* Particle density in real and reciprocal space

$$\int f_{w}(\mathbf{r}, \mathbf{k}) d\mathbf{k} = |\Psi(\mathbf{r})|^{2} = n(\mathbf{r})$$

$$\int f_{w}(\mathbf{r}, \mathbf{k}) dr = \frac{1}{(2\pi)^{3}} \int dr_{1} \int dr_{2} \exp(-i\mathbf{k} \cdot (\mathbf{r}_{2} - \mathbf{r}_{1})) \psi(\mathbf{r}_{2}) \Psi^{*}(\mathbf{r}_{1})$$

$$= |\Psi(\mathbf{k})|^{2} = n(\mathbf{k})$$

* Mean value of an operator A over a statistical ensemble

$$\langle \mathcal{A} \rangle = Tr(\rho \mathcal{A}) = \int d\mathbf{r}_1 \int d\mathbf{r}_2 \langle \mathbf{r}_1 | \mathcal{A} | \mathbf{r}_2 \rangle \langle \mathbf{r}_2 | \Psi \rangle \langle \Psi | \mathbf{r}_1 \rangle$$
 using the $| \mathbf{r} \rangle$ representation

change in average **r** and relative **r**' position:

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Some properties of the Wigner Function

$$\langle \mathcal{A} \rangle = \int d\mathbf{r} \int d\mathbf{r}' \,\mathcal{A}(\mathbf{r} - \mathbf{r}'/2, \mathbf{r} + \mathbf{r}'/2) \,\mathcal{\Psi}(\mathbf{r} + \mathbf{r}'/2) \,\mathcal{\Psi}^*(\mathbf{r} - \mathbf{r}'/2)$$
introduction of $\delta(\mathbf{r}' - \mathbf{r}'')$ to recover the Wigner function:

$$\langle \mathcal{A} \rangle = \int d\mathbf{r} \int d\mathbf{r}' \,\mathcal{A}(\mathbf{r} - \mathbf{r}'/2, \mathbf{r} + \mathbf{r}'/2) \int d\mathbf{r}'' \,\delta(\mathbf{r}' - \mathbf{r}'') \,\mathcal{\Psi}(\mathbf{r} + \mathbf{r}''/2) \,\mathcal{\Psi}^*(\mathbf{r} - \mathbf{r}''/2)$$

$$\langle \mathcal{A} \rangle = \int d\mathbf{r} \int d\mathbf{r}' \,\mathcal{A}(\mathbf{r} - \mathbf{r}'/2, \mathbf{r} + \mathbf{r}'/2) \int d\mathbf{r}'' \,\delta(\mathbf{r}' - \mathbf{r}'') \\ \times \underbrace{\frac{1}{(2\pi)^3} \int d\mathbf{k} \exp(i\mathbf{k} \cdot (\mathbf{r}' - \mathbf{r}''))}_{\mathcal{H}} \mathcal{\Psi}(\mathbf{r} + \mathbf{r}''/2) \,\mathcal{\Psi}^*(\mathbf{r} - \mathbf{r}''/2)$$

$$\langle \mathcal{A} \rangle = \int d\mathbf{r} \int d\mathbf{k} \,\mathcal{A}_w(\mathbf{r}, \mathbf{k}) f_w(\mathbf{r}, \mathbf{k}) \qquad \text{with}$$

$$\mathcal{A}_w(\mathbf{r}, \mathbf{k}) = \int d\mathbf{r}' \exp(-i\mathbf{k} \cdot \mathbf{r}') \,\mathcal{A}(\mathbf{r} - \mathbf{r}'/2, \mathbf{r} + \mathbf{r}'/2)$$

$$(Weyl-Wigner transform of \mathcal{A})$$

$$\Rightarrow \text{ Strong analogy between the Wigner function and the classical distribution function }$$

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Some properties of the Wigner Function

If \mathcal{A} is only **r** dependent : $\mathcal{A}(\mathbf{r}) = \langle \mathbf{r} | \mathcal{A} | \mathbf{r} \rangle$

$$\langle \mathcal{A} \rangle = \int d\mathbf{r} \int d\mathbf{k} \ \mathcal{A}(\mathbf{r}) f_w(\mathbf{r}, \mathbf{k})$$

If \mathcal{A} is only **k** dependent : $\mathcal{A}(\mathbf{k}) = \langle \mathbf{k} | \mathcal{A} | \mathbf{k} \rangle$

$$\langle \mathcal{A} \rangle = \int d\mathbf{r} \int d\mathbf{k} \ \mathcal{A}(\mathbf{k}) f_w(\mathbf{r},\mathbf{k})$$

 \Rightarrow Complete analogy between the Wigner function and the classical distribution function

However, the Wigner function is not a distribution function (or a probability density) !

- it may assume negative values
- it would be in contradiction with the Heisenberg inequalities

(it is just mathematically used as a distribution function)

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Dynamical equation of the Wigner Function

$$f_{w}(\mathbf{r},\mathbf{k},t) = \frac{1}{(2\pi)^{3}} \int \exp(-i\mathbf{k}\cdot\mathbf{r}') \psi(\mathbf{r}+\mathbf{r}'/2,t) \psi^{*}(\mathbf{r}-\mathbf{r}'/2,t) d\mathbf{r}'$$

by differentiating with respect to t and using the Schrödinger equation

$$i\hbar \frac{\partial f_{w}}{\partial t} = \frac{1}{(2\pi)^{3}} \int d\mathbf{r}' \exp(-i\mathbf{k}\cdot\mathbf{r}') i\hbar \frac{\partial}{\partial t} \left[\psi(\mathbf{r}+\mathbf{r}'/2,t) \psi^{*}(\mathbf{r}-\mathbf{r}'/2,t) \right]$$
$$= \frac{1}{(2\pi)^{3}} \int d\mathbf{r}' \exp(-i\mathbf{k}\cdot\mathbf{r}') \left[\left(H\psi(\mathbf{r}+\mathbf{r}'/2,t) \right) \psi^{*}(\mathbf{r}-\mathbf{r}'/2,t) -\psi(\mathbf{r}+\mathbf{r}'/2,t) \left(H\psi^{*}(\mathbf{r}-\mathbf{r}'/2,t) \right) \right]$$

where
$$H = -\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r}) = H_0 + V(\mathbf{r})$$

with $V(\mathbf{r})$ a general potential applied to the electron

We consider separately the effect of free electron term H_0 and of the potential $V(\mathbf{r})$

Dynamical equation of the Wigner Function

* free electron term
$$(H = H_0)$$

 $i\hbar \frac{\partial f_w}{\partial t} = \frac{1}{(2\pi)^3} \int d\mathbf{r}' \exp(-i\mathbf{k}\cdot\mathbf{r}') \left[\left(-\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{r} + \mathbf{r}'/2, t) \right) \psi^*(\mathbf{r} - \mathbf{r}'/2, t) -\psi(\mathbf{r} + \mathbf{r}'/2, t) \left(-\frac{\hbar^2}{2m} \nabla^2 \psi^*(\mathbf{r} - \mathbf{r}'/2, t) \right) \right] \right]$
 $= -\frac{\hbar^2}{2m} \frac{1}{(2\pi)^3} \int d\mathbf{r}' \exp(-i\mathbf{k}\cdot\mathbf{r}') 2\nabla' \left[(\nabla\psi(\mathbf{r} + \mathbf{r}'/2, t)) \psi^*(\mathbf{r} - \mathbf{r}'/2, t) -\psi(\mathbf{r} + \mathbf{r}'/2, t) (\nabla\psi^*(\mathbf{r} - \mathbf{r}'/2, t)) \right]$
(where $\nabla' \rightarrow$ derivation with respect to \mathbf{r}')
integration by parts, assuming the wave function and its derivative to vanish at infinity, leads to:
 $\frac{\partial f_w}{\partial t} = -\frac{\hbar}{m} \mathbf{k} \cdot \frac{1}{(2\pi)^3} \int d\mathbf{r}' \exp(-i\mathbf{k}\cdot\mathbf{r}') \nabla \left[\psi(\mathbf{r} + \mathbf{r}'/2, t) \psi^*(\mathbf{r} - \mathbf{r}'/2, t) \right] = -\frac{\hbar}{m} \mathbf{k} \cdot \nabla f_w$

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Dynamical equation of the Wigner Function

* term including the effect of potential V(r)

$$i\hbar \frac{\partial f_{w}}{\partial t}\Big|_{V} = \frac{1}{(2\pi)^{3}} \int d\mathbf{r}' \exp(-i\mathbf{k}\cdot\mathbf{r}') \left[V(\mathbf{r}+\mathbf{r}'/2)\psi(\mathbf{r}+\mathbf{r}'/2,t)\psi^{*}(\mathbf{r}-\mathbf{r}'/2,t) -\psi(\mathbf{r}+\mathbf{r}'/2,t)\psi^{*}(\mathbf{r}-\mathbf{r}'/2,t) \right]$$

$$= \frac{1}{(2\pi)^{3}} \int d\mathbf{r}' \exp(-i\mathbf{k}\cdot\mathbf{r}') \left[V(\mathbf{r}+\mathbf{r}'/2) - V(\mathbf{r}-\mathbf{r}'/2) \right]$$

$$\times \left[\psi(\mathbf{r}+\mathbf{r}'/2,t)\psi^{*}(\mathbf{r}-\mathbf{r}'/2,t) \right]$$

inserting the plane wave representation of the *d* function leads to:

$$\frac{\partial f_{w}}{\partial t}\Big|_{V} = \int d\mathbf{k}' \ V_{w}(\mathbf{r}, \mathbf{k} - \mathbf{k}') f_{w}(\mathbf{r}, \mathbf{k}')$$
where $V_{w}(\mathbf{r}, \mathbf{k}) = \frac{1}{i\hbar} \frac{1}{(2\pi)^{3}} \int d\mathbf{r}' \exp(-i\mathbf{k} \cdot \mathbf{r}') \left[V(\mathbf{r} + \mathbf{r}'/2) - V(\mathbf{r} - \mathbf{r}'/2) \right]$
is the Wigner potential

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Dynamical equation of the Wigner Function

by including the free electron term, we have finally:

$$\frac{\partial f_{w}}{\partial t} + \frac{\hbar}{m} \mathbf{k} \cdot \nabla f_{w} = \int d\mathbf{k}' \ V_{w}(\mathbf{r}, \mathbf{k} - \mathbf{k}') f_{w}(\mathbf{r}, \mathbf{k}')$$

Wigner Transport Equation (WTE)

 \rightarrow Dynamical equation for ballistic electrons moving in the potential V(r)

$$\hat{Q}[V] f_w(\mathbf{r}, \mathbf{k}) = \int d\mathbf{k}' \ V_w(\mathbf{r}, \mathbf{k} - \mathbf{k}') f_w(\mathbf{r}, \mathbf{k}')$$

is the quantum evolution term of the Wigner function

Next steps:

- * transforming the Wigner potential to see better the connection with BTE
- * introduction of scatterings (collisions)
- * solution of BTE for device simulation

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Connection between Wigner TE and Boltzmann TE

The Wigner potential writes:

$$V_{w}(\mathbf{r}, \mathbf{p}) = \frac{1}{i\hbar} \frac{1}{(2\pi)^{3}} \int d\mathbf{r}' \exp(-i\mathbf{k} \cdot \mathbf{r}') B_{V}(\mathbf{r}, \mathbf{r}')$$
where $B_{V}(\mathbf{r}, \mathbf{r}') = V(\mathbf{r} + \mathbf{r}'/2) - V(\mathbf{r} - \mathbf{r}'/2)$
Gradient expansion of the potential V: $\hat{V}_{\mp}(\mathbf{r}, \mathbf{r}') = V(\mathbf{r} \pm \mathbf{r}'/2) - \nabla V(\mathbf{r}) \cdot (\pm \mathbf{r}'/2)$
 $\hat{B}_{V}(\mathbf{r}, \mathbf{r}') = \hat{V}_{+}(\mathbf{r}, \mathbf{r}') - \hat{V}_{-}(\mathbf{r}, \mathbf{r}')$
 $\rightarrow B_{V}(\mathbf{r}, \mathbf{r}') = \hat{B}_{V}(\mathbf{r}, \mathbf{r}') + \nabla V(\mathbf{r}) \cdot \mathbf{r}'$
by defining $\hat{V}_{w}(\mathbf{r}, \mathbf{p}) = \frac{1}{i\hbar} \frac{1}{(2\pi)^{3}} \int d\mathbf{r}' \exp(-i\mathbf{k} \cdot \mathbf{r}') \hat{B}_{V}(\mathbf{r}, \mathbf{r}') - \hat{F}$
and given that $\frac{1}{i\hbar} \int d\mathbf{r}' \exp(-i\mathbf{k} \cdot \mathbf{r}') \nabla V(\mathbf{r}) \cdot \mathbf{r}' = \frac{(2\pi)^{3}}{\hbar} \nabla V \delta'(\mathbf{k})$
 \rightarrow we can separate the effect of the classical force **F** from quantum effects:

$$\int d\mathbf{k}' \ V_w(\mathbf{r},\mathbf{k}-\mathbf{k}') f_w(\mathbf{r},\mathbf{k}') = -\frac{1}{\hbar} \mathbf{F} \cdot \nabla_{\mathbf{k}} f_w + \int d\mathbf{k}' \ \hat{V}_w(\mathbf{r},\mathbf{k}-\mathbf{k}') f_w(\mathbf{r},\mathbf{k}')$$

Connection between Wigner TE and Boltzmann TE

Scattering in the Wigner Transport Equation

The simple method: instantaneous perturbation process

ightarrow Boltzmann collision operator \hat{C} : it operates on the Wigner function $f_{\scriptscriptstyle W}$

$$\hat{C} f_{w} = \sum_{i} \left[\int f_{w}(\mathbf{r}, \mathbf{k}') \left[1 - f_{w}(\mathbf{r}, \mathbf{k}) \right] S_{i}(\mathbf{k}', \mathbf{k}) d\mathbf{k}' - \int f_{w}(\mathbf{r}, \mathbf{k}) \left[1 - f_{w}(\mathbf{r}, \mathbf{k}') \right] S_{i}(\mathbf{k}, \mathbf{k}') d\mathbf{k}' \right]$$

where
$$S_i(\mathbf{k},\mathbf{k}') = \frac{2\pi}{\hbar} |\langle \mathbf{k}' | H_i | \mathbf{k} \rangle|^2 \rho_{\mathbf{k}'} \delta(E' - E)$$

$$\stackrel{\bullet}{\hookrightarrow} \quad \frac{\partial f_w}{\partial t} + \frac{\hbar}{m} \mathbf{k} \cdot \nabla_{\mathbf{r}} f_w + \frac{1}{\hbar} \mathbf{F} \cdot \nabla_{\mathbf{k}} f_w = \hat{Q} f_w + \hat{C} f_w$$

Strong analogy between BTE and WTE

 \Rightarrow posibility of using the same numerical technique

Wigner Function and Green Functions

$$f_w = -i\hbar G^{<}$$

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Monte Carlo solution of the WTE

$$\frac{\partial f_{w}}{\partial t} + \frac{\hbar}{m} \mathbf{k} \cdot \nabla_{\mathbf{r}} f_{w} + \frac{1}{\hbar} \mathbf{F} \cdot \nabla_{\mathbf{k}} f_{w} = \int d\mathbf{k}' \ \hat{V}_{w} (\mathbf{r}, \mathbf{k} - \mathbf{k}') f_{w} (\mathbf{r}, \mathbf{k}')$$

Idea : representing the Wigner fonction f_w as a sum of Dirac excitations in r et k, with an amplitude A (affinity) which changes

$$f_{w}(r,k) = \sum_{i} \delta(r-r_{i}) \delta(k-k_{i}) A_{i}$$

* pseudo-particule i characterized by : $\begin{cases} r_i \rightarrow \text{classical evolution} \\ k_i \rightarrow \text{classical evolution} \\ A_i \rightarrow \text{quantum evolution} \end{cases}$

The A_i may be negative

* classical limit : $A_i = 1$ ("real" particule)

 \Rightarrow We can use the standard Monte Carlo algorithm, by including the evolution of affinities

In a cell $c(\mathbf{r}, \mathbf{k})$:

 $\sum_{i=1}^{\infty} \frac{dA_i}{dt} = \hat{Q} \Big[V_{rapid} \Big] f_w (\mathbf{r}, \mathbf{k})$ $i \in c(\mathbf{r}, \mathbf{k})$

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

73

Interaction of a wave packet on a square barrier

GaAs/GaAlAs Resonant Tunneling Diode (RTD)

I-V Characteristics

* Comparison with Non-Equilibrium Green Function calculation

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Electron Density

77

Effect of scattering

Transport in semiconductor nanodevices

4. Coulomb blockade in conducting island: principle

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

The quantum capacitor

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

81

The principle of Coulomb blockade

The principle of Coulomb blockade

The principle of Coulomb blockade

The MIMIM structure: electrical modelling

The MIMIM structure: electrical modelling

 $W_1 = -e \frac{C_1}{C_{aa}} n_2 V$

 \rightarrow tunneling in the island via J₁:

 $J_1 \equiv \text{resistance} \\ J_2 \equiv \text{capacitance} \end{cases}$

For n_1 electrons the source provide the work:

$$W_2 = -e \frac{C_2}{C_{eq}} n_1 V$$

The MIMIM structure: electrical modelling

The MIMIM structure: electrical modelling

The Single Electron Transistor (SET)

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Calculation of QD electronic structure

Electronic structure: Numerical techniques

The simplest case:

- spherical quantum dot
- 1 electron
- no bias

$$\left[-\frac{\hbar^2}{2}\nabla_{\vec{r}}\left(\frac{1}{m}\nabla_{\vec{r}}\right) + V_{conf}\left(\vec{r}\right)\right] \Psi(\vec{r}) = E \Psi(\vec{r})$$

 $V_0 = 3.1 \text{ eV}$ Si SiO₂

spherical symmetry \rightarrow spherical harmonics

Electronic structure: Numerical techniques

Electronic structure: Numerical techniques

Electronic structure: Hartree method

Hartree:
$$\psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N) = \psi_1(\vec{r}_1)\psi_2(\vec{r}_2)\cdots\psi_N(\vec{r}_N)$$

1 equation for each electron : $H_i \psi_i = E_i \psi_i$

with:
$$H_i = \frac{p_i^2}{2m} + V_{conf}\left(\vec{r}_i\right) + V_{inter_i}\left(\vec{r}_i\right)$$
 (no bias)

 V_{inter_i} represents the interaction of electron *i* with the rest of the electronic cloud of density ρ_i

$$\rho_{i}\left(\vec{r}\right) = -e \sum_{\substack{j=0\\j\neq i}}^{N} \left|\psi_{j}\left(\vec{r}\right)\right|^{2} \quad \text{and} \quad \vec{\nabla}\left(\varepsilon \varepsilon_{0} \,\vec{\nabla} V_{inter_{i}}\right) = e \,\rho_{i}$$

 $\begin{cases} \vec{\nabla} \left(\varepsilon \vec{\nabla} V_{inter_i} \right) = -\frac{e}{\varepsilon \varepsilon_0} \sum_{j \neq i}^{N} \left| \psi_j \left(\vec{r} \right) \right|^2 \\ \frac{p_i^2}{2m} \psi_i + \left(V_{conf} + V_{inter_i} \right) \psi_i = E_i \ \psi_i \end{cases}$

system of coupled Poisson / Schrödinger equations

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Electronic structure: results of Hartree

For a discrete number of electrons *N*, the chemical potential $\mu(N)$ is defined as the variation of total energy resulting from one additional electron:

$$\mu(N) = \frac{\partial E_{TOT}}{\partial N} \approx \frac{E(N) - E(N-1)}{N - (N-1)} = E(N) - E(N-1)$$

spherical quantum dot

(including the difference in effective mass and dielectric constant between Si and SiO₂)

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

97

Electronic structure: results of Hartree

For a discrete number of electrons *N*, the chemical potential $\mu(N)$ is defined as the variation of total energy resulting from one additional electron:

Electronic structure: results of Hartree

For a discrete number of electrons *N*, the chemical potential $\mu(N)$ is defined as the variation of total energy resulting from one additional electron:

$$\mu(N) = \frac{\partial E_{TOT}}{\partial N} \simeq \frac{E(N) - E(N-1)}{N - (N-1)} = E(N) - E(N-1)$$

spherical quantum dot

Electronic structure: Comparison Hartree / DFT

Validity of effective mass approximation

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Electronic Structure: Density of States

Electronic structure: Effect of bias (method)

Electronic structure: Effect of bias (result)

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Electronic structure: Effect of bias (results)

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Single electron tunneling through a single barrier

Single electron tunneling through a single barrier

Single-electron tunneling

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Single-electron tunneling

Single-electron tunneling

Single-electron tunneling

Current: approximation of the tunnel resistance

Equations of the previous slide yield:

$$I = -e \frac{2\pi}{\hbar} \int |M|^2 \rho_L(E) \rho_R(E) \left[f_L(E) - f_R(E) \right] dE$$

where $f_{L/R}(E) = f\left(E - E_{F_{L/R}}\right) = \frac{1}{1 + \exp\left(\frac{E - E_{F_{L/R}}}{k_B T}\right)}$

* Approximation of low temperature:

 \Rightarrow Fermi functions are step functions

$$I \approx e \frac{2\pi}{\hbar} \int_{E_{F_L}}^{E_{F_R}} |M|^2 \rho_L(E) \rho_R(E) dE$$

* Approximation of low bias voltage: $-eV = E_{F_R} - E_{F_L}$ weak $\Rightarrow \begin{cases} \rho_R(E) \approx \text{const} = \rho_{R_0} \\ \rho_L(E) \approx \text{const} = \rho_{L_0} \end{cases}$

$$\left|\left|M\right|^2 \approx \text{const}$$

$$I = \frac{V}{R_t} \quad \text{where} \quad R_t = \frac{\hbar}{2\pi e^2 \rho_{R_0} \rho_{L_0} |M|^2}$$

is the tunnel resistance (hard approximation)

MIM structure: decomposition in 2 hamiltonians

MIM structure: wave functions

WKB approximation in the barrier:
$$\psi(x) \approx \psi(0) \exp\left(-\int_{0}^{x} \sqrt{(2m/\hbar^{2})(V(x')-E)} dx'\right)$$

if $-(L_{L}+d/2) \leq x < -d/2$
if $-d/2 \leq x < 0$
 $A_{L} \sin\left[k_{1}L_{L}\right] \exp\left[-\alpha \frac{2d}{3V} \frac{1}{\sqrt{V_{0}-E}} \left(\left[\frac{x}{d}V+V_{0}-E\right]^{3/2} - \left[-\frac{1}{2}V+V_{0}-E\right]^{3/2}\right)\right]$
 $A_{L} \sin\left[k_{1}L_{L}\right] \exp\left[-\alpha \frac{2d}{3V} \frac{1}{\sqrt{V_{0}-E}} \left(\left[V_{0}-E\right]^{3/2} - \left[-\frac{1}{2}V+V_{0}-E\right]^{3/2}\right)\right]$
if $0 \leq x$
otherwise
normalisation: $|A_{L}|^{2}_{L_{L}\to\infty} = \frac{2}{L_{L}}$
... and similar results for the right electrode
 \rightarrow straightforward calculation of transition rates and current

P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005

Current: comparison of the methods (MIM structure)

Calculation of current: Monte Carlo

Exactly the same idea as for the Monte Carlo method for solving the BTE collision \rightarrow tunneling event time of free flight \rightarrow time without tunneling event \Rightarrow series of "free flights" interrupted by tunneling events using 2 random numbers R_1, R_2 : $t_f = -\frac{\ln(R_1)}{\sum_i \Gamma_i}$ $g_{j}(E) = \frac{\sum_{i=1}^{n} e_{i}}{\sum_{i=1}^{T}}$ for a set of *T* possible tunneling events: R_{2} g_2 g_{i-1} g_i 0 g_1 \rightarrow in this case the tunneling event *i* is selected P. Dollfus, 4th School of Simulation and Modelling Physics, Hanoi, 22-23 Dec. 2005 120

M-I-Si-I-M structure: I-V characteristics

Current-Voltage characteristics

Current-Voltage characteristics

Current-Voltage characteristics

